MAT-free graphic arrangements and a characterization of strongly chordal graphs by edge-labeling
Algebraic Combinatorics, Tome 6 (2023) no. 6, pp. 1447-1467

Voir la notice de l'article provenant de la source Numdam

Ideal subarrangements of a Weyl arrangement are proved to be free by the multiple addition theorem (MAT) due to Abe–Barakat–Cuntz–Hoge–Terao (2016). They form a significant class among Weyl subarrangements that are known to be free so far. The concept of MAT-free arrangements was introduced recently by Cuntz–Mücksch (2020) to capture a core of the MAT, which enlarges the ideal subarrangements from the perspective of freeness. The aim of this paper is to give a precise characterization of the MAT-freeness in the case of type A Weyl subarrangements (or graphic arrangements). It is known that the ideal and free graphic arrangements correspond to the unit interval and chordal graphs, respectively. We prove that a graphic arrangement is MAT-free if and only if the underlying graph is strongly chordal. In particular, it affirmatively answers a question of Cuntz–Mücksch that MAT-freeness is closed under taking localization in the case of graphic arrangements.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/alco.319
Classification : 52C35, 13N15, 05C78
Keywords: Hyperplane arrangement, free arrangement, MAT-free arrangement, ideal subarrangement, graphic arrangement, strongly chordal graph, edge-labeling of graph

Tran, Tan N. 1 ; Tsujie, Shuhei 2

1 Leibniz Universität Hannover Fakultät für Mathematik und Physik, Institut für Algebra, Zahlentheorie und Diskrete Mathematik Welfengarten 1, D-30167 Hannover Germany
2 Hokkaido University of Education Department of Mathematics Asahikawa, Hokkaido 070-8621 Japan
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{ALCO_2023__6_6_1447_0,
     author = {Tran, Tan N. and Tsujie, Shuhei},
     title = {MAT-free graphic arrangements and a characterization of strongly chordal graphs by edge-labeling},
     journal = {Algebraic Combinatorics},
     pages = {1447--1467},
     publisher = {The Combinatorics Consortium},
     volume = {6},
     number = {6},
     year = {2023},
     doi = {10.5802/alco.319},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5802/alco.319/}
}
TY  - JOUR
AU  - Tran, Tan N.
AU  - Tsujie, Shuhei
TI  - MAT-free graphic arrangements and a characterization of strongly chordal graphs by edge-labeling
JO  - Algebraic Combinatorics
PY  - 2023
SP  - 1447
EP  - 1467
VL  - 6
IS  - 6
PB  - The Combinatorics Consortium
UR  - http://geodesic.mathdoc.fr/articles/10.5802/alco.319/
DO  - 10.5802/alco.319
LA  - en
ID  - ALCO_2023__6_6_1447_0
ER  - 
%0 Journal Article
%A Tran, Tan N.
%A Tsujie, Shuhei
%T MAT-free graphic arrangements and a characterization of strongly chordal graphs by edge-labeling
%J Algebraic Combinatorics
%D 2023
%P 1447-1467
%V 6
%N 6
%I The Combinatorics Consortium
%U http://geodesic.mathdoc.fr/articles/10.5802/alco.319/
%R 10.5802/alco.319
%G en
%F ALCO_2023__6_6_1447_0
Tran, Tan N.; Tsujie, Shuhei. MAT-free graphic arrangements and a characterization of strongly chordal graphs by edge-labeling. Algebraic Combinatorics, Tome 6 (2023) no. 6, pp. 1447-1467. doi: 10.5802/alco.319

Cité par Sources :