Voir la notice de l'article provenant de la source Numdam
We study the Castelnuovo–Mumford regularity of powers of edge ideals for arbitrary (finite simple) graphs. It has been repeatedly conjectured that for every graph , for all , which is the best possible upper bound for any . We prove this conjecture for every for all bipartite graphs, and for for all graphs. The case is crucial for our work and suspension plays a key role in its proof.
Banerjee, Arindam 1 ; Nevo, Eran 2
@article{ALCO_2023__6_6_1687_0, author = {Banerjee, Arindam and Nevo, Eran}, title = {Regularity of {Edge} {Ideals} {Via} {Suspension}}, journal = {Algebraic Combinatorics}, pages = {1687--1695}, publisher = {The Combinatorics Consortium}, volume = {6}, number = {6}, year = {2023}, doi = {10.5802/alco.317}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.5802/alco.317/} }
TY - JOUR AU - Banerjee, Arindam AU - Nevo, Eran TI - Regularity of Edge Ideals Via Suspension JO - Algebraic Combinatorics PY - 2023 SP - 1687 EP - 1695 VL - 6 IS - 6 PB - The Combinatorics Consortium UR - http://geodesic.mathdoc.fr/articles/10.5802/alco.317/ DO - 10.5802/alco.317 LA - en ID - ALCO_2023__6_6_1687_0 ER -
Banerjee, Arindam; Nevo, Eran. Regularity of Edge Ideals Via Suspension. Algebraic Combinatorics, Tome 6 (2023) no. 6, pp. 1687-1695. doi: 10.5802/alco.317
Cité par Sources :