Voir la notice de l'article provenant de la source Numdam
Specht polynomials classically realize the irreducible representations of the symmetric group. The ideals defined by these polynomials provide a strong connection with the combinatorics of Young tableaux and have been intensively studied by several authors. We initiate similar investigations for the ideals defined by the Specht polynomials associated to the hyperoctahedral group . We introduce a bidominance order on bipartitions which describes the poset of inclusions of these ideals and study algebraic consequences on general -invariant ideals and varieties, which can lead to computational simplifications.
Debus, Sebastian 1 ; Moustrou, Philippe 2 ; Riener, Cordian 3 ; Verdure, Hugues 3
@article{ALCO_2023__6_6_1593_0, author = {Debus, Sebastian and Moustrou, Philippe and Riener, Cordian and Verdure, Hugues}, title = {The poset of {Specht} ideals for hyperoctahedral groups}, journal = {Algebraic Combinatorics}, pages = {1593--1619}, publisher = {The Combinatorics Consortium}, volume = {6}, number = {6}, year = {2023}, doi = {10.5802/alco.316}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.5802/alco.316/} }
TY - JOUR AU - Debus, Sebastian AU - Moustrou, Philippe AU - Riener, Cordian AU - Verdure, Hugues TI - The poset of Specht ideals for hyperoctahedral groups JO - Algebraic Combinatorics PY - 2023 SP - 1593 EP - 1619 VL - 6 IS - 6 PB - The Combinatorics Consortium UR - http://geodesic.mathdoc.fr/articles/10.5802/alco.316/ DO - 10.5802/alco.316 LA - en ID - ALCO_2023__6_6_1593_0 ER -
%0 Journal Article %A Debus, Sebastian %A Moustrou, Philippe %A Riener, Cordian %A Verdure, Hugues %T The poset of Specht ideals for hyperoctahedral groups %J Algebraic Combinatorics %D 2023 %P 1593-1619 %V 6 %N 6 %I The Combinatorics Consortium %U http://geodesic.mathdoc.fr/articles/10.5802/alco.316/ %R 10.5802/alco.316 %G en %F ALCO_2023__6_6_1593_0
Debus, Sebastian; Moustrou, Philippe; Riener, Cordian; Verdure, Hugues. The poset of Specht ideals for hyperoctahedral groups. Algebraic Combinatorics, Tome 6 (2023) no. 6, pp. 1593-1619. doi: 10.5802/alco.316
Cité par Sources :