Voir la notice de l'article provenant de la source Numdam
The -dimension of a graph is the smallest positive integer such that the -dimensional Weisfeiler–Leman algorithm correctly tests the isomorphism between and any other graph. It is proved that the -dimension of any circulant graph of prime power order is at most , and this bound cannot be reduced. The proof is based on using theories of coherent configurations and Cayley schemes over a cyclic group.
Ponomarenko, Ilia 1
@article{ALCO_2023__6_6_1469_0, author = {Ponomarenko, Ilia}, title = {On the {WL-dimension} of circulant graphs of prime power order}, journal = {Algebraic Combinatorics}, pages = {1469--1490}, publisher = {The Combinatorics Consortium}, volume = {6}, number = {6}, year = {2023}, doi = {10.5802/alco.315}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.5802/alco.315/} }
TY - JOUR AU - Ponomarenko, Ilia TI - On the WL-dimension of circulant graphs of prime power order JO - Algebraic Combinatorics PY - 2023 SP - 1469 EP - 1490 VL - 6 IS - 6 PB - The Combinatorics Consortium UR - http://geodesic.mathdoc.fr/articles/10.5802/alco.315/ DO - 10.5802/alco.315 LA - en ID - ALCO_2023__6_6_1469_0 ER -
%0 Journal Article %A Ponomarenko, Ilia %T On the WL-dimension of circulant graphs of prime power order %J Algebraic Combinatorics %D 2023 %P 1469-1490 %V 6 %N 6 %I The Combinatorics Consortium %U http://geodesic.mathdoc.fr/articles/10.5802/alco.315/ %R 10.5802/alco.315 %G en %F ALCO_2023__6_6_1469_0
Ponomarenko, Ilia. On the WL-dimension of circulant graphs of prime power order. Algebraic Combinatorics, Tome 6 (2023) no. 6, pp. 1469-1490. doi: 10.5802/alco.315
Cité par Sources :