Enriched toric [D ]-partitions
Algebraic Combinatorics, Tome 6 (2023) no. 6, pp. 1491-1518

Voir la notice de l'article provenant de la source Numdam

This paper develops the theory of enriched toric [D ]-partitions. Whereas Stembridge’s enriched P-partitions give rise to the peak algebra which is a subring of the ring of quasi-symmetric functions QSym, our enriched toric [D ]-partitions generate the cyclic peak algebra which is a subring of the ring of cyclic quasi-symmetric functions cQSym. In the same manner as the peak set of linear permutations appears when considering enriched P-partitions, the cyclic peak set of cyclic permutations plays an important role in our theory. The associated order polynomial is discussed based on this framework.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/alco.314
Classification : 05A05, 05E05, 06A11
Keywords: Cyclic peak, cyclic permutation, cyclic quasi-symmetric function, enriched $P$-partition, toric poset, order polynomial

Liang, Jinting 1

1 Michigan State University Department of Mathematics 619 Red Cedar Road C212 Wells Hall East Lansing MI 48824-1027 (USA)
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{ALCO_2023__6_6_1491_0,
     author = {Liang, Jinting},
     title = {Enriched toric $[\vec{D}]$-partitions},
     journal = {Algebraic Combinatorics},
     pages = {1491--1518},
     publisher = {The Combinatorics Consortium},
     volume = {6},
     number = {6},
     year = {2023},
     doi = {10.5802/alco.314},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5802/alco.314/}
}
TY  - JOUR
AU  - Liang, Jinting
TI  - Enriched toric $[\vec{D}]$-partitions
JO  - Algebraic Combinatorics
PY  - 2023
SP  - 1491
EP  - 1518
VL  - 6
IS  - 6
PB  - The Combinatorics Consortium
UR  - http://geodesic.mathdoc.fr/articles/10.5802/alco.314/
DO  - 10.5802/alco.314
LA  - en
ID  - ALCO_2023__6_6_1491_0
ER  - 
%0 Journal Article
%A Liang, Jinting
%T Enriched toric $[\vec{D}]$-partitions
%J Algebraic Combinatorics
%D 2023
%P 1491-1518
%V 6
%N 6
%I The Combinatorics Consortium
%U http://geodesic.mathdoc.fr/articles/10.5802/alco.314/
%R 10.5802/alco.314
%G en
%F ALCO_2023__6_6_1491_0
Liang, Jinting. Enriched toric $[\vec{D}]$-partitions. Algebraic Combinatorics, Tome 6 (2023) no. 6, pp. 1491-1518. doi: 10.5802/alco.314

Cité par Sources :