Voir la notice de l'article provenant de la source Numdam
This paper develops the theory of enriched toric -partitions. Whereas Stembridge’s enriched -partitions give rise to the peak algebra which is a subring of the ring of quasi-symmetric functions , our enriched toric -partitions generate the cyclic peak algebra which is a subring of the ring of cyclic quasi-symmetric functions . In the same manner as the peak set of linear permutations appears when considering enriched -partitions, the cyclic peak set of cyclic permutations plays an important role in our theory. The associated order polynomial is discussed based on this framework.
Liang, Jinting 1
@article{ALCO_2023__6_6_1491_0, author = {Liang, Jinting}, title = {Enriched toric $[\vec{D}]$-partitions}, journal = {Algebraic Combinatorics}, pages = {1491--1518}, publisher = {The Combinatorics Consortium}, volume = {6}, number = {6}, year = {2023}, doi = {10.5802/alco.314}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.5802/alco.314/} }
TY - JOUR AU - Liang, Jinting TI - Enriched toric $[\vec{D}]$-partitions JO - Algebraic Combinatorics PY - 2023 SP - 1491 EP - 1518 VL - 6 IS - 6 PB - The Combinatorics Consortium UR - http://geodesic.mathdoc.fr/articles/10.5802/alco.314/ DO - 10.5802/alco.314 LA - en ID - ALCO_2023__6_6_1491_0 ER -
Liang, Jinting. Enriched toric $[\vec{D}]$-partitions. Algebraic Combinatorics, Tome 6 (2023) no. 6, pp. 1491-1518. doi: 10.5802/alco.314
Cité par Sources :