A natural idempotent in the descent algebra of a finite Coxeter group
Algebraic Combinatorics, Tome 6 (2023) no. 5, pp. 1177-1188

Voir la notice de l'article provenant de la source Numdam

We construct a natural idempotent in the descent algebra of a finite Coxeter group. The proof is uniform (independent of the classification). This leads to a simple determination of the spectrum of a natural matrix related to descents. Other applications are discussed.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/alco.310
Classification : 05A05, 05C25, 05C50, 05E16
Keywords: Coxeter group, reflection representation, permutation representation, descents, descent algebra, idempotents, central limit theorems

Renteln, Paul 1

1 California State University Department of Physics San Bernardino, CA 92407 USA
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{ALCO_2023__6_5_1177_0,
     author = {Renteln, Paul},
     title = {A natural idempotent in the descent algebra of a finite {Coxeter} group},
     journal = {Algebraic Combinatorics},
     pages = {1177--1188},
     publisher = {The Combinatorics Consortium},
     volume = {6},
     number = {5},
     year = {2023},
     doi = {10.5802/alco.310},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5802/alco.310/}
}
TY  - JOUR
AU  - Renteln, Paul
TI  - A natural idempotent in the descent algebra of a finite Coxeter group
JO  - Algebraic Combinatorics
PY  - 2023
SP  - 1177
EP  - 1188
VL  - 6
IS  - 5
PB  - The Combinatorics Consortium
UR  - http://geodesic.mathdoc.fr/articles/10.5802/alco.310/
DO  - 10.5802/alco.310
LA  - en
ID  - ALCO_2023__6_5_1177_0
ER  - 
%0 Journal Article
%A Renteln, Paul
%T A natural idempotent in the descent algebra of a finite Coxeter group
%J Algebraic Combinatorics
%D 2023
%P 1177-1188
%V 6
%N 5
%I The Combinatorics Consortium
%U http://geodesic.mathdoc.fr/articles/10.5802/alco.310/
%R 10.5802/alco.310
%G en
%F ALCO_2023__6_5_1177_0
Renteln, Paul. A natural idempotent in the descent algebra of a finite Coxeter group. Algebraic Combinatorics, Tome 6 (2023) no. 5, pp. 1177-1188. doi: 10.5802/alco.310

Cité par Sources :