Voir la notice de l'article provenant de la source Numdam
We construct a natural idempotent in the descent algebra of a finite Coxeter group. The proof is uniform (independent of the classification). This leads to a simple determination of the spectrum of a natural matrix related to descents. Other applications are discussed.
Renteln, Paul 1
@article{ALCO_2023__6_5_1177_0, author = {Renteln, Paul}, title = {A natural idempotent in the descent algebra of a finite {Coxeter} group}, journal = {Algebraic Combinatorics}, pages = {1177--1188}, publisher = {The Combinatorics Consortium}, volume = {6}, number = {5}, year = {2023}, doi = {10.5802/alco.310}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.5802/alco.310/} }
TY - JOUR AU - Renteln, Paul TI - A natural idempotent in the descent algebra of a finite Coxeter group JO - Algebraic Combinatorics PY - 2023 SP - 1177 EP - 1188 VL - 6 IS - 5 PB - The Combinatorics Consortium UR - http://geodesic.mathdoc.fr/articles/10.5802/alco.310/ DO - 10.5802/alco.310 LA - en ID - ALCO_2023__6_5_1177_0 ER -
%0 Journal Article %A Renteln, Paul %T A natural idempotent in the descent algebra of a finite Coxeter group %J Algebraic Combinatorics %D 2023 %P 1177-1188 %V 6 %N 5 %I The Combinatorics Consortium %U http://geodesic.mathdoc.fr/articles/10.5802/alco.310/ %R 10.5802/alco.310 %G en %F ALCO_2023__6_5_1177_0
Renteln, Paul. A natural idempotent in the descent algebra of a finite Coxeter group. Algebraic Combinatorics, Tome 6 (2023) no. 5, pp. 1177-1188. doi: 10.5802/alco.310
Cité par Sources :