Voir la notice de l'article provenant de la source Numdam
The present paper introduces a modified version of cyclic-monotone independence which originally arose in the context of random matrices, and also introduces its natural analogy called cyclic-Boolean independence. We investigate formulas for convolutions, limit theorems for sums of independent random variables, and also classify infinitely divisible distributions with respect to cyclic-Boolean convolution. Finally, we provide applications to the eigenvalues of the adjacency matrices of iterated star products of graphs and also iterated comb products of graphs.
Arizmendi, Octavio 1 ; Hasebe, Takahiro 2 ; Lehner, Franz 3
@article{ALCO_2023__6_6_1697_0, author = {Arizmendi, Octavio and Hasebe, Takahiro and Lehner, Franz}, title = {Cyclic independence: {Boolean} and monotone}, journal = {Algebraic Combinatorics}, pages = {1697--1734}, publisher = {The Combinatorics Consortium}, volume = {6}, number = {6}, year = {2023}, doi = {10.5802/alco.309}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.5802/alco.309/} }
TY - JOUR AU - Arizmendi, Octavio AU - Hasebe, Takahiro AU - Lehner, Franz TI - Cyclic independence: Boolean and monotone JO - Algebraic Combinatorics PY - 2023 SP - 1697 EP - 1734 VL - 6 IS - 6 PB - The Combinatorics Consortium UR - http://geodesic.mathdoc.fr/articles/10.5802/alco.309/ DO - 10.5802/alco.309 LA - en ID - ALCO_2023__6_6_1697_0 ER -
%0 Journal Article %A Arizmendi, Octavio %A Hasebe, Takahiro %A Lehner, Franz %T Cyclic independence: Boolean and monotone %J Algebraic Combinatorics %D 2023 %P 1697-1734 %V 6 %N 6 %I The Combinatorics Consortium %U http://geodesic.mathdoc.fr/articles/10.5802/alco.309/ %R 10.5802/alco.309 %G en %F ALCO_2023__6_6_1697_0
Arizmendi, Octavio; Hasebe, Takahiro; Lehner, Franz. Cyclic independence: Boolean and monotone. Algebraic Combinatorics, Tome 6 (2023) no. 6, pp. 1697-1734. doi: 10.5802/alco.309
Cité par Sources :