Voir la notice de l'article provenant de la source Numdam
A PSCA is a multiset of permutations of the -element alphabet such that every sequence of distinct elements of the alphabet appears in the specified order in exactly permutations. For , let be the smallest positive integer such that a PSCA exists. Kuperberg, Lovett and Peled proved using probabilistic methods. We present an explicit construction that proves for fixed . The method of construction involves taking a permutation representation of the group of projectivities of a suitable projective space of dimension and deleting all but a certain number of symbols from each permutation. In the case that this space is a Desarguesian projective plane, we also show that there exists a permutation representation of the group of projectivities of the plane that covers the vast majority of 4-sequences of its points the same number of times.
Gentle, Aidan R. 1
@article{ALCO_2023__6_5_1383_0, author = {Gentle, Aidan R.}, title = {A polynomial construction of perfect sequence covering arrays}, journal = {Algebraic Combinatorics}, pages = {1383--1394}, publisher = {The Combinatorics Consortium}, volume = {6}, number = {5}, year = {2023}, doi = {10.5802/alco.308}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.5802/alco.308/} }
TY - JOUR AU - Gentle, Aidan R. TI - A polynomial construction of perfect sequence covering arrays JO - Algebraic Combinatorics PY - 2023 SP - 1383 EP - 1394 VL - 6 IS - 5 PB - The Combinatorics Consortium UR - http://geodesic.mathdoc.fr/articles/10.5802/alco.308/ DO - 10.5802/alco.308 LA - en ID - ALCO_2023__6_5_1383_0 ER -
%0 Journal Article %A Gentle, Aidan R. %T A polynomial construction of perfect sequence covering arrays %J Algebraic Combinatorics %D 2023 %P 1383-1394 %V 6 %N 5 %I The Combinatorics Consortium %U http://geodesic.mathdoc.fr/articles/10.5802/alco.308/ %R 10.5802/alco.308 %G en %F ALCO_2023__6_5_1383_0
Gentle, Aidan R. A polynomial construction of perfect sequence covering arrays. Algebraic Combinatorics, Tome 6 (2023) no. 5, pp. 1383-1394. doi: 10.5802/alco.308
Cité par Sources :