A polynomial construction of perfect sequence covering arrays
Algebraic Combinatorics, Tome 6 (2023) no. 5, pp. 1383-1394

Voir la notice de l'article provenant de la source Numdam

A PSCA(v,t,λ) is a multiset of permutations of the v-element alphabet {0,,v-1} such that every sequence of t distinct elements of the alphabet appears in the specified order in exactly λ permutations. For vt, let g(v,t) be the smallest positive integer λ such that a PSCA(v,t,λ) exists. Kuperberg, Lovett and Peled proved g(v,t)=O(v t ) using probabilistic methods. We present an explicit construction that proves g(v,t)=O(v t(t-2) ) for fixed t4. The method of construction involves taking a permutation representation of the group of projectivities of a suitable projective space of dimension t-2 and deleting all but a certain number of symbols from each permutation. In the case that this space is a Desarguesian projective plane, we also show that there exists a permutation representation of the group of projectivities of the plane that covers the vast majority of 4-sequences of its points the same number of times.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/alco.308
Classification : 05B30, 05B40, 20B25, 51E20
Keywords: sequence covering array, permutation representation, exact covering, projective geometry

Gentle, Aidan R. 1

1 School of Mathematics Monash University Vic 3800, Australia
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{ALCO_2023__6_5_1383_0,
     author = {Gentle, Aidan R.},
     title = {A polynomial construction of perfect sequence covering arrays},
     journal = {Algebraic Combinatorics},
     pages = {1383--1394},
     publisher = {The Combinatorics Consortium},
     volume = {6},
     number = {5},
     year = {2023},
     doi = {10.5802/alco.308},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5802/alco.308/}
}
TY  - JOUR
AU  - Gentle, Aidan R.
TI  - A polynomial construction of perfect sequence covering arrays
JO  - Algebraic Combinatorics
PY  - 2023
SP  - 1383
EP  - 1394
VL  - 6
IS  - 5
PB  - The Combinatorics Consortium
UR  - http://geodesic.mathdoc.fr/articles/10.5802/alco.308/
DO  - 10.5802/alco.308
LA  - en
ID  - ALCO_2023__6_5_1383_0
ER  - 
%0 Journal Article
%A Gentle, Aidan R.
%T A polynomial construction of perfect sequence covering arrays
%J Algebraic Combinatorics
%D 2023
%P 1383-1394
%V 6
%N 5
%I The Combinatorics Consortium
%U http://geodesic.mathdoc.fr/articles/10.5802/alco.308/
%R 10.5802/alco.308
%G en
%F ALCO_2023__6_5_1383_0
Gentle, Aidan R. A polynomial construction of perfect sequence covering arrays. Algebraic Combinatorics, Tome 6 (2023) no. 5, pp. 1383-1394. doi: 10.5802/alco.308

Cité par Sources :