Voir la notice de l'article provenant de la source Numdam
We investigate Voronoi diagrams with respect to an asymmetric tropical distance function, in particular for infinite point sets. These Voronoi diagrams turn out to be much better behaved than those arising from the standard tropical distance, which is symmetric. In particular, we show that the asymmetric tropical Voronoi diagrams may be seen as tropicalizations of power diagrams over fields of real Puiseux series. Our results are then applied to rational lattices and Laurent monomial modules.
Comăneci, Andrei 1 ; Joswig, Michael 2
@article{ALCO_2023__6_5_1211_0, author = {Com\u{a}neci, Andrei and Joswig, Michael}, title = {Asymmetric tropical distances and power diagrams}, journal = {Algebraic Combinatorics}, pages = {1211--1233}, publisher = {The Combinatorics Consortium}, volume = {6}, number = {5}, year = {2023}, doi = {10.5802/alco.306}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.5802/alco.306/} }
TY - JOUR AU - Comăneci, Andrei AU - Joswig, Michael TI - Asymmetric tropical distances and power diagrams JO - Algebraic Combinatorics PY - 2023 SP - 1211 EP - 1233 VL - 6 IS - 5 PB - The Combinatorics Consortium UR - http://geodesic.mathdoc.fr/articles/10.5802/alco.306/ DO - 10.5802/alco.306 LA - en ID - ALCO_2023__6_5_1211_0 ER -
%0 Journal Article %A Comăneci, Andrei %A Joswig, Michael %T Asymmetric tropical distances and power diagrams %J Algebraic Combinatorics %D 2023 %P 1211-1233 %V 6 %N 5 %I The Combinatorics Consortium %U http://geodesic.mathdoc.fr/articles/10.5802/alco.306/ %R 10.5802/alco.306 %G en %F ALCO_2023__6_5_1211_0
Comăneci, Andrei; Joswig, Michael. Asymmetric tropical distances and power diagrams. Algebraic Combinatorics, Tome 6 (2023) no. 5, pp. 1211-1233. doi: 10.5802/alco.306
Cité par Sources :