Voir la notice de l'article provenant de la source Numdam
Let be a (finite or infinite) group such that is not simple. The non-commuting, non-generating graph of has vertex set , with vertices and adjacent whenever and . We investigate the relationship between the structure of and the connectedness and diameter of . In particular, we prove that the graph either: (i) is connected with diameter at most ; (ii) consists of isolated vertices and a connected component of diameter at most ; or (iii) is the union of two connected components of diameter . We also describe in detail the finite groups with graphs of type (iii). In the companion paper [17], we consider the case where is finite and simple.
Freedman, Saul D. 1, 2
@article{ALCO_2023__6_5_1395_0, author = {Freedman, Saul D.}, title = {The non-commuting, non-generating graph of a non-simple group}, journal = {Algebraic Combinatorics}, pages = {1395--1418}, publisher = {The Combinatorics Consortium}, volume = {6}, number = {5}, year = {2023}, doi = {10.5802/alco.305}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.5802/alco.305/} }
TY - JOUR AU - Freedman, Saul D. TI - The non-commuting, non-generating graph of a non-simple group JO - Algebraic Combinatorics PY - 2023 SP - 1395 EP - 1418 VL - 6 IS - 5 PB - The Combinatorics Consortium UR - http://geodesic.mathdoc.fr/articles/10.5802/alco.305/ DO - 10.5802/alco.305 LA - en ID - ALCO_2023__6_5_1395_0 ER -
%0 Journal Article %A Freedman, Saul D. %T The non-commuting, non-generating graph of a non-simple group %J Algebraic Combinatorics %D 2023 %P 1395-1418 %V 6 %N 5 %I The Combinatorics Consortium %U http://geodesic.mathdoc.fr/articles/10.5802/alco.305/ %R 10.5802/alco.305 %G en %F ALCO_2023__6_5_1395_0
Freedman, Saul D. The non-commuting, non-generating graph of a non-simple group. Algebraic Combinatorics, Tome 6 (2023) no. 5, pp. 1395-1418. doi: 10.5802/alco.305
Cité par Sources :