The non-commuting, non-generating graph of a non-simple group
Algebraic Combinatorics, Tome 6 (2023) no. 5, pp. 1395-1418

Voir la notice de l'article provenant de la source Numdam

Let G be a (finite or infinite) group such that G/Z(G) is not simple. The non-commuting, non-generating graph Ξ(G) of G has vertex set GZ(G), with vertices x and y adjacent whenever [x,y]1 and x,yG. We investigate the relationship between the structure of G and the connectedness and diameter of Ξ(G). In particular, we prove that the graph either: (i) is connected with diameter at most 4; (ii) consists of isolated vertices and a connected component of diameter at most 4; or (iii) is the union of two connected components of diameter 2. We also describe in detail the finite groups with graphs of type (iii). In the companion paper [17], we consider the case where G/Z(G) is finite and simple.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/alco.305
Classification : 20D60, 20F16, 05C25
Keywords: non-commuting non-generating graph, soluble groups, generating graph, graphs defined on groups

Freedman, Saul D. 1, 2

1 School of Mathematics and Statistics University of St Andrews St Andrews KY16 9SS (UK)
2 Current address: Centre for the Mathematics of Symmetry and Computation The University of Western Australia Crawley, WA 6009 (Australia)
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{ALCO_2023__6_5_1395_0,
     author = {Freedman, Saul D.},
     title = {The non-commuting, non-generating graph of a non-simple group},
     journal = {Algebraic Combinatorics},
     pages = {1395--1418},
     publisher = {The Combinatorics Consortium},
     volume = {6},
     number = {5},
     year = {2023},
     doi = {10.5802/alco.305},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5802/alco.305/}
}
TY  - JOUR
AU  - Freedman, Saul D.
TI  - The non-commuting, non-generating graph of a non-simple group
JO  - Algebraic Combinatorics
PY  - 2023
SP  - 1395
EP  - 1418
VL  - 6
IS  - 5
PB  - The Combinatorics Consortium
UR  - http://geodesic.mathdoc.fr/articles/10.5802/alco.305/
DO  - 10.5802/alco.305
LA  - en
ID  - ALCO_2023__6_5_1395_0
ER  - 
%0 Journal Article
%A Freedman, Saul D.
%T The non-commuting, non-generating graph of a non-simple group
%J Algebraic Combinatorics
%D 2023
%P 1395-1418
%V 6
%N 5
%I The Combinatorics Consortium
%U http://geodesic.mathdoc.fr/articles/10.5802/alco.305/
%R 10.5802/alco.305
%G en
%F ALCO_2023__6_5_1395_0
Freedman, Saul D. The non-commuting, non-generating graph of a non-simple group. Algebraic Combinatorics, Tome 6 (2023) no. 5, pp. 1395-1418. doi: 10.5802/alco.305

Cité par Sources :