On d -towers of graphs
Algebraic Combinatorics, Tome 6 (2023) no. 5, pp. 1331-1346

Voir la notice de l'article provenant de la source Numdam

Let be a rational prime. We show that an analogue of a conjecture of Greenberg in graph theory holds true. More precisely, we show that when n is sufficiently large, the -adic valuation of the number of spanning trees at the nth layer of a d -tower of graphs is given by a polynomial in n and n with rational coefficients of total degree at most d and of degree in n at most one.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/alco.304
Classification : 05C25, 11R18, 11R23, 11Z05
Keywords: Ihara zeta functions, Iwasawa theory, spanning trees

DuBose, Sage 1 ; Vallières, Daniel 1

1 California State University Mathematics and Statistics Department Chico CA 95929 USA
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{ALCO_2023__6_5_1331_0,
     author = {DuBose, Sage and Valli\`eres, Daniel},
     title = {On $\mathbb{Z}_{\ell }^{d}$-towers of graphs},
     journal = {Algebraic Combinatorics},
     pages = {1331--1346},
     publisher = {The Combinatorics Consortium},
     volume = {6},
     number = {5},
     year = {2023},
     doi = {10.5802/alco.304},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5802/alco.304/}
}
TY  - JOUR
AU  - DuBose, Sage
AU  - Vallières, Daniel
TI  - On $\mathbb{Z}_{\ell }^{d}$-towers of graphs
JO  - Algebraic Combinatorics
PY  - 2023
SP  - 1331
EP  - 1346
VL  - 6
IS  - 5
PB  - The Combinatorics Consortium
UR  - http://geodesic.mathdoc.fr/articles/10.5802/alco.304/
DO  - 10.5802/alco.304
LA  - en
ID  - ALCO_2023__6_5_1331_0
ER  - 
%0 Journal Article
%A DuBose, Sage
%A Vallières, Daniel
%T On $\mathbb{Z}_{\ell }^{d}$-towers of graphs
%J Algebraic Combinatorics
%D 2023
%P 1331-1346
%V 6
%N 5
%I The Combinatorics Consortium
%U http://geodesic.mathdoc.fr/articles/10.5802/alco.304/
%R 10.5802/alco.304
%G en
%F ALCO_2023__6_5_1331_0
DuBose, Sage; Vallières, Daniel. On $\mathbb{Z}_{\ell }^{d}$-towers of graphs. Algebraic Combinatorics, Tome 6 (2023) no. 5, pp. 1331-1346. doi: 10.5802/alco.304

Cité par Sources :