Voir la notice de l'article provenant de la source Numdam
Let be a rational prime. We show that an analogue of a conjecture of Greenberg in graph theory holds true. More precisely, we show that when is sufficiently large, the -adic valuation of the number of spanning trees at the th layer of a -tower of graphs is given by a polynomial in and with rational coefficients of total degree at most and of degree in at most one.
DuBose, Sage 1 ; Vallières, Daniel 1
@article{ALCO_2023__6_5_1331_0, author = {DuBose, Sage and Valli\`eres, Daniel}, title = {On $\mathbb{Z}_{\ell }^{d}$-towers of graphs}, journal = {Algebraic Combinatorics}, pages = {1331--1346}, publisher = {The Combinatorics Consortium}, volume = {6}, number = {5}, year = {2023}, doi = {10.5802/alco.304}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.5802/alco.304/} }
TY - JOUR AU - DuBose, Sage AU - Vallières, Daniel TI - On $\mathbb{Z}_{\ell }^{d}$-towers of graphs JO - Algebraic Combinatorics PY - 2023 SP - 1331 EP - 1346 VL - 6 IS - 5 PB - The Combinatorics Consortium UR - http://geodesic.mathdoc.fr/articles/10.5802/alco.304/ DO - 10.5802/alco.304 LA - en ID - ALCO_2023__6_5_1331_0 ER -
%0 Journal Article %A DuBose, Sage %A Vallières, Daniel %T On $\mathbb{Z}_{\ell }^{d}$-towers of graphs %J Algebraic Combinatorics %D 2023 %P 1331-1346 %V 6 %N 5 %I The Combinatorics Consortium %U http://geodesic.mathdoc.fr/articles/10.5802/alco.304/ %R 10.5802/alco.304 %G en %F ALCO_2023__6_5_1331_0
DuBose, Sage; Vallières, Daniel. On $\mathbb{Z}_{\ell }^{d}$-towers of graphs. Algebraic Combinatorics, Tome 6 (2023) no. 5, pp. 1331-1346. doi: 10.5802/alco.304
Cité par Sources :