Automorphisms of the double cover of a circulant graph of valency at most 7
Algebraic Combinatorics, Tome 6 (2023) no. 5, pp. 1235-1271

Voir la notice de l'article provenant de la source Numdam

A graph X is said to be unstable if the direct product X×K 2 (also called the canonical double cover of X) has automorphisms that do not come from automorphisms of its factors X and K 2 . It is nontrivially unstable if it is unstable, connected, and non-bipartite, and no two distinct vertices of X have exactly the same neighbors.

We find all of the nontrivially unstable circulant graphs of valency at most 7. (They come in several infinite families.) We also show that the instability of each of these graphs is explained by theorems of Steve Wilson. This is best possible, because there is a nontrivially unstable circulant graph of valency 8 that does not satisfy the hypotheses of any of Wilson’s four instability theorems for circulant graphs.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/alco.303
Classification : 05C25, 05C76
Keywords: circulant, double cover, automorphism group

Hujdurović, Ademir 1 ; Mitrović, Đorđe 2 ; Witte Morris, Dave 3

1 University of Primorska, UP IAM, Muzejski trg 2, 6000 Koper, Slovenia and University of Primorska, UP FAMNIT, Glagoljaška 8, 6000 Koper, Slovenia
2 University of Primorska, UP FAMNIT, Glagoljaška 8, 6000 Koper, Slovenia
3 Department of Mathematics and Computer Science, University of Lethbridge, Lethbridge, Alberta, T1K 3M4, Canada
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{ALCO_2023__6_5_1235_0,
     author = {Hujdurovi\'c, Ademir and Mitrovi\'c, {\DJ}or{\dj}e and Witte Morris, Dave},
     title = {Automorphisms of the double cover of a circulant graph of valency at most 7},
     journal = {Algebraic Combinatorics},
     pages = {1235--1271},
     publisher = {The Combinatorics Consortium},
     volume = {6},
     number = {5},
     year = {2023},
     doi = {10.5802/alco.303},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5802/alco.303/}
}
TY  - JOUR
AU  - Hujdurović, Ademir
AU  - Mitrović, Đorđe
AU  - Witte Morris, Dave
TI  - Automorphisms of the double cover of a circulant graph of valency at most 7
JO  - Algebraic Combinatorics
PY  - 2023
SP  - 1235
EP  - 1271
VL  - 6
IS  - 5
PB  - The Combinatorics Consortium
UR  - http://geodesic.mathdoc.fr/articles/10.5802/alco.303/
DO  - 10.5802/alco.303
LA  - en
ID  - ALCO_2023__6_5_1235_0
ER  - 
%0 Journal Article
%A Hujdurović, Ademir
%A Mitrović, Đorđe
%A Witte Morris, Dave
%T Automorphisms of the double cover of a circulant graph of valency at most 7
%J Algebraic Combinatorics
%D 2023
%P 1235-1271
%V 6
%N 5
%I The Combinatorics Consortium
%U http://geodesic.mathdoc.fr/articles/10.5802/alco.303/
%R 10.5802/alco.303
%G en
%F ALCO_2023__6_5_1235_0
Hujdurović, Ademir; Mitrović, Đorđe; Witte Morris, Dave. Automorphisms of the double cover of a circulant graph of valency at most 7. Algebraic Combinatorics, Tome 6 (2023) no. 5, pp. 1235-1271. doi: 10.5802/alco.303

Cité par Sources :