The Grassmannian of 3-planes in 8 is schön
Algebraic Combinatorics, Tome 6 (2023) no. 5, pp. 1273-1299

Voir la notice de l'article provenant de la source Numdam

We prove that the open subvariety Gr 0 (3,8) of the Grassmannian Gr(3,8) determined by the nonvanishing of all Plücker coordinates is schön, i.e. all of its initial degenerations are smooth. Furthermore, we find an initial degeneration that has two connected components, and show that the remaining initial degenerations, up to symmetry, are irreducible. As an application, we prove that the Chow quotient of Gr(3,8) by the diagonal torus of PGL(8) is the log canonical compactification of the moduli space of 8 lines in 2 , resolving a conjecture of Hacking, Keel, and Tevelev. Along the way we develop various techniques to study finite inverse limits of schemes.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/alco.302
Classification : 14T90, 05E14, 14C05, 52B40
Keywords: Chow quotient, Grassmannian, matroid, tight span

Corey, Daniel 1 ; Luber, Dante 2

1 University of Nevada, Las Vegas 4505 S Maryland Pkwy Las Vegas, NV 89154
2 Technische Universität Berlin Institut für Mathematik, Sekr. MA 6-2 Strasse des 17 Juni 136 10623 Berlin
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{ALCO_2023__6_5_1273_0,
     author = {Corey, Daniel and Luber, Dante},
     title = {The {Grassmannian} of $3$-planes in $\mathbb{C}^{8}$ is sch\"on},
     journal = {Algebraic Combinatorics},
     pages = {1273--1299},
     publisher = {The Combinatorics Consortium},
     volume = {6},
     number = {5},
     year = {2023},
     doi = {10.5802/alco.302},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5802/alco.302/}
}
TY  - JOUR
AU  - Corey, Daniel
AU  - Luber, Dante
TI  - The Grassmannian of $3$-planes in $\mathbb{C}^{8}$ is schön
JO  - Algebraic Combinatorics
PY  - 2023
SP  - 1273
EP  - 1299
VL  - 6
IS  - 5
PB  - The Combinatorics Consortium
UR  - http://geodesic.mathdoc.fr/articles/10.5802/alco.302/
DO  - 10.5802/alco.302
LA  - en
ID  - ALCO_2023__6_5_1273_0
ER  - 
%0 Journal Article
%A Corey, Daniel
%A Luber, Dante
%T The Grassmannian of $3$-planes in $\mathbb{C}^{8}$ is schön
%J Algebraic Combinatorics
%D 2023
%P 1273-1299
%V 6
%N 5
%I The Combinatorics Consortium
%U http://geodesic.mathdoc.fr/articles/10.5802/alco.302/
%R 10.5802/alco.302
%G en
%F ALCO_2023__6_5_1273_0
Corey, Daniel; Luber, Dante. The Grassmannian of $3$-planes in $\mathbb{C}^{8}$ is schön. Algebraic Combinatorics, Tome 6 (2023) no. 5, pp. 1273-1299. doi: 10.5802/alco.302

Cité par Sources :