Voir la notice de l'article provenant de la source Numdam
We prove that the open subvariety of the Grassmannian determined by the nonvanishing of all Plücker coordinates is schön, i.e. all of its initial degenerations are smooth. Furthermore, we find an initial degeneration that has two connected components, and show that the remaining initial degenerations, up to symmetry, are irreducible. As an application, we prove that the Chow quotient of by the diagonal torus of is the log canonical compactification of the moduli space of lines in , resolving a conjecture of Hacking, Keel, and Tevelev. Along the way we develop various techniques to study finite inverse limits of schemes.
Corey, Daniel 1 ; Luber, Dante 2
@article{ALCO_2023__6_5_1273_0, author = {Corey, Daniel and Luber, Dante}, title = {The {Grassmannian} of $3$-planes in $\mathbb{C}^{8}$ is sch\"on}, journal = {Algebraic Combinatorics}, pages = {1273--1299}, publisher = {The Combinatorics Consortium}, volume = {6}, number = {5}, year = {2023}, doi = {10.5802/alco.302}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.5802/alco.302/} }
TY - JOUR AU - Corey, Daniel AU - Luber, Dante TI - The Grassmannian of $3$-planes in $\mathbb{C}^{8}$ is schön JO - Algebraic Combinatorics PY - 2023 SP - 1273 EP - 1299 VL - 6 IS - 5 PB - The Combinatorics Consortium UR - http://geodesic.mathdoc.fr/articles/10.5802/alco.302/ DO - 10.5802/alco.302 LA - en ID - ALCO_2023__6_5_1273_0 ER -
%0 Journal Article %A Corey, Daniel %A Luber, Dante %T The Grassmannian of $3$-planes in $\mathbb{C}^{8}$ is schön %J Algebraic Combinatorics %D 2023 %P 1273-1299 %V 6 %N 5 %I The Combinatorics Consortium %U http://geodesic.mathdoc.fr/articles/10.5802/alco.302/ %R 10.5802/alco.302 %G en %F ALCO_2023__6_5_1273_0
Corey, Daniel; Luber, Dante. The Grassmannian of $3$-planes in $\mathbb{C}^{8}$ is schön. Algebraic Combinatorics, Tome 6 (2023) no. 5, pp. 1273-1299. doi: 10.5802/alco.302
Cité par Sources :