Diagonal degenerations of matrix Schubert varieties
Algebraic Combinatorics, Tome 6 (2023) no. 4, pp. 1073-1094

Voir la notice de l'article provenant de la source Numdam

Knutson and Miller (2005) established a connection between the anti-diagonal Gröbner degenerations of matrix Schubert varieties and the pre-existing combinatorics of pipe dreams. They used this correspondence to give a geometrically-natural explanation for the appearance of the combinatorially-defined Schubert polynomials as representatives of Schubert classes. Recently, Hamaker, Pechenik, and Weigandt (2022) proposed a similar connection between diagonal degenerations of matrix Schubert varieties and bumpless pipe dreams, newer combinatorial objects introduced by Lam, Lee, and Shimozono (2021). Hamaker, Pechenik, and Weigandt described new generating sets of the defining ideals of matrix Schubert varieties and conjectured a characterization of permutations for which these generating sets form diagonal Gröbner bases. They proved special cases of this conjecture and described diagonal degenerations of matrix Schubert varieties in terms of bumpless pipe dreams in these cases. The purpose of this paper is to prove the conjecture in full generality. The proof uses a connection between liaison and geometric vertex decomposition established in earlier work with Rajchgot (2021).

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/alco.296
Classification : 14M15, 13P10, 13C40, 05E99
Keywords: Matrix Schubert varieties, Gröbner bases, Gorenstein liaison, geometric vertex decomposition

Klein, Patricia 1

1 Texas A&M University Department of mathematics College Station TX 77843 (USA)
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{ALCO_2023__6_4_1073_0,
     author = {Klein, Patricia},
     title = {Diagonal degenerations of matrix {Schubert} varieties},
     journal = {Algebraic Combinatorics},
     pages = {1073--1094},
     publisher = {The Combinatorics Consortium},
     volume = {6},
     number = {4},
     year = {2023},
     doi = {10.5802/alco.296},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5802/alco.296/}
}
TY  - JOUR
AU  - Klein, Patricia
TI  - Diagonal degenerations of matrix Schubert varieties
JO  - Algebraic Combinatorics
PY  - 2023
SP  - 1073
EP  - 1094
VL  - 6
IS  - 4
PB  - The Combinatorics Consortium
UR  - http://geodesic.mathdoc.fr/articles/10.5802/alco.296/
DO  - 10.5802/alco.296
LA  - en
ID  - ALCO_2023__6_4_1073_0
ER  - 
%0 Journal Article
%A Klein, Patricia
%T Diagonal degenerations of matrix Schubert varieties
%J Algebraic Combinatorics
%D 2023
%P 1073-1094
%V 6
%N 4
%I The Combinatorics Consortium
%U http://geodesic.mathdoc.fr/articles/10.5802/alco.296/
%R 10.5802/alco.296
%G en
%F ALCO_2023__6_4_1073_0
Klein, Patricia. Diagonal degenerations of matrix Schubert varieties. Algebraic Combinatorics, Tome 6 (2023) no. 4, pp. 1073-1094. doi: 10.5802/alco.296

Cité par Sources :