Voir la notice de l'article provenant de la source Numdam
We study the local face modules of triangulations of simplices, i.e. the modules over face rings whose Hilbert functions are local -vectors. In particular, we give resolutions of these modules by subcomplexes of Koszul complexes as well as functorial maps between modules induced by inclusions of faces. As applications, we prove a new monotonicity result for local -vectors and new results on the structure of faces in triangulations with vanishing local -vectors.
Larson, Matt 1 ; Payne, Sam 2 ; Stapledon, Alan 3
@article{ALCO_2023__6_4_1057_0, author = {Larson, Matt and Payne, Sam and Stapledon, Alan}, title = {Resolutions of local face modules, functoriality, and vanishing of local $h$-vectors}, journal = {Algebraic Combinatorics}, pages = {1057--1072}, publisher = {The Combinatorics Consortium}, volume = {6}, number = {4}, year = {2023}, doi = {10.5802/alco.293}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.5802/alco.293/} }
TY - JOUR AU - Larson, Matt AU - Payne, Sam AU - Stapledon, Alan TI - Resolutions of local face modules, functoriality, and vanishing of local $h$-vectors JO - Algebraic Combinatorics PY - 2023 SP - 1057 EP - 1072 VL - 6 IS - 4 PB - The Combinatorics Consortium UR - http://geodesic.mathdoc.fr/articles/10.5802/alco.293/ DO - 10.5802/alco.293 LA - en ID - ALCO_2023__6_4_1057_0 ER -
%0 Journal Article %A Larson, Matt %A Payne, Sam %A Stapledon, Alan %T Resolutions of local face modules, functoriality, and vanishing of local $h$-vectors %J Algebraic Combinatorics %D 2023 %P 1057-1072 %V 6 %N 4 %I The Combinatorics Consortium %U http://geodesic.mathdoc.fr/articles/10.5802/alco.293/ %R 10.5802/alco.293 %G en %F ALCO_2023__6_4_1057_0
Larson, Matt; Payne, Sam; Stapledon, Alan. Resolutions of local face modules, functoriality, and vanishing of local $h$-vectors. Algebraic Combinatorics, Tome 6 (2023) no. 4, pp. 1057-1072. doi: 10.5802/alco.293
Cité par Sources :