Voir la notice de l'article provenant de la source Numdam
We show the maximality of subfields as cliques in a special family of Cayley graphs defined on the additive group of a finite field. In particular, this confirms a conjecture of Yip on generalized Paley graphs.
Yip, Chi Hoi 1
@article{ALCO_2023__6_4_901_0, author = {Yip, Chi Hoi}, title = {Maximality of subfields as cliques in {Cayley} graphs over finite fields}, journal = {Algebraic Combinatorics}, pages = {901--905}, publisher = {The Combinatorics Consortium}, volume = {6}, number = {4}, year = {2023}, doi = {10.5802/alco.291}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.5802/alco.291/} }
TY - JOUR AU - Yip, Chi Hoi TI - Maximality of subfields as cliques in Cayley graphs over finite fields JO - Algebraic Combinatorics PY - 2023 SP - 901 EP - 905 VL - 6 IS - 4 PB - The Combinatorics Consortium UR - http://geodesic.mathdoc.fr/articles/10.5802/alco.291/ DO - 10.5802/alco.291 LA - en ID - ALCO_2023__6_4_901_0 ER -
%0 Journal Article %A Yip, Chi Hoi %T Maximality of subfields as cliques in Cayley graphs over finite fields %J Algebraic Combinatorics %D 2023 %P 901-905 %V 6 %N 4 %I The Combinatorics Consortium %U http://geodesic.mathdoc.fr/articles/10.5802/alco.291/ %R 10.5802/alco.291 %G en %F ALCO_2023__6_4_901_0
Yip, Chi Hoi. Maximality of subfields as cliques in Cayley graphs over finite fields. Algebraic Combinatorics, Tome 6 (2023) no. 4, pp. 901-905. doi: 10.5802/alco.291
Cité par Sources :