Voir la notice de l'article provenant de la source Numdam
This paper studies Markov chains on the symmetric group where the transition probabilities are given by the Ewens distribution with parameter . The eigenvalues are identified to be proportional to the content polynomials of partitions. We show that the mixing time is bounded above by a constant depending only on the parameter if is fixed. However, if it agrees with the number of permuted elements (), the sequence of chains has a total variation cutoff at .
Özdemir, Alperen 1
@article{ALCO_2023__6_4_907_0, author = {\"Ozdemir, Alperen}, title = {Random walks generated by the {Ewens} distribution on the symmetric group}, journal = {Algebraic Combinatorics}, pages = {907--927}, publisher = {The Combinatorics Consortium}, volume = {6}, number = {4}, year = {2023}, doi = {10.5802/alco.290}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.5802/alco.290/} }
TY - JOUR AU - Özdemir, Alperen TI - Random walks generated by the Ewens distribution on the symmetric group JO - Algebraic Combinatorics PY - 2023 SP - 907 EP - 927 VL - 6 IS - 4 PB - The Combinatorics Consortium UR - http://geodesic.mathdoc.fr/articles/10.5802/alco.290/ DO - 10.5802/alco.290 LA - en ID - ALCO_2023__6_4_907_0 ER -
%0 Journal Article %A Özdemir, Alperen %T Random walks generated by the Ewens distribution on the symmetric group %J Algebraic Combinatorics %D 2023 %P 907-927 %V 6 %N 4 %I The Combinatorics Consortium %U http://geodesic.mathdoc.fr/articles/10.5802/alco.290/ %R 10.5802/alco.290 %G en %F ALCO_2023__6_4_907_0
Özdemir, Alperen. Random walks generated by the Ewens distribution on the symmetric group. Algebraic Combinatorics, Tome 6 (2023) no. 4, pp. 907-927. doi: 10.5802/alco.290
Cité par Sources :