Voir la notice de l'article provenant de la source Numdam
The quasisymmetric Macdonald polynomials were recently introduced by the first and second authors with Haglund, Mason, and Williams in [3] to refine the symmetric Macdonald polynomials with the property that equals , the quasisymmetric Schur polynomial of [9]. We derive an expansion for in the fundamental basis of quasisymmetric functions.
Corteel, Sylvie 1 ; Mandelshtam, Olya 2 ; Roberts, Austin 3
@article{ALCO_2023__6_4_941_0, author = {Corteel, Sylvie and Mandelshtam, Olya and Roberts, Austin}, title = {Expanding the quasisymmetric {Macdonald} polynomials in the fundamental basis}, journal = {Algebraic Combinatorics}, pages = {941--954}, publisher = {The Combinatorics Consortium}, volume = {6}, number = {4}, year = {2023}, doi = {10.5802/alco.289}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.5802/alco.289/} }
TY - JOUR AU - Corteel, Sylvie AU - Mandelshtam, Olya AU - Roberts, Austin TI - Expanding the quasisymmetric Macdonald polynomials in the fundamental basis JO - Algebraic Combinatorics PY - 2023 SP - 941 EP - 954 VL - 6 IS - 4 PB - The Combinatorics Consortium UR - http://geodesic.mathdoc.fr/articles/10.5802/alco.289/ DO - 10.5802/alco.289 LA - en ID - ALCO_2023__6_4_941_0 ER -
%0 Journal Article %A Corteel, Sylvie %A Mandelshtam, Olya %A Roberts, Austin %T Expanding the quasisymmetric Macdonald polynomials in the fundamental basis %J Algebraic Combinatorics %D 2023 %P 941-954 %V 6 %N 4 %I The Combinatorics Consortium %U http://geodesic.mathdoc.fr/articles/10.5802/alco.289/ %R 10.5802/alco.289 %G en %F ALCO_2023__6_4_941_0
Corteel, Sylvie; Mandelshtam, Olya; Roberts, Austin. Expanding the quasisymmetric Macdonald polynomials in the fundamental basis. Algebraic Combinatorics, Tome 6 (2023) no. 4, pp. 941-954. doi: 10.5802/alco.289
Cité par Sources :