Voir la notice de l'article provenant de la source Numdam
We prove that no tree contains a set of three vertices which are pairwise strongly cospectral. This answers a question raised by Godsil and Smith in 2017.
Coutinho, Gabriel 1 ; Juliano, Emanuel 1 ; Spier, Thomás Jung 1
@article{ALCO_2023__6_4_955_0, author = {Coutinho, Gabriel and Juliano, Emanuel and Spier, Thom\'as Jung}, title = {Strong cospectrality in trees}, journal = {Algebraic Combinatorics}, pages = {955--963}, publisher = {The Combinatorics Consortium}, volume = {6}, number = {4}, year = {2023}, doi = {10.5802/alco.288}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.5802/alco.288/} }
TY - JOUR AU - Coutinho, Gabriel AU - Juliano, Emanuel AU - Spier, Thomás Jung TI - Strong cospectrality in trees JO - Algebraic Combinatorics PY - 2023 SP - 955 EP - 963 VL - 6 IS - 4 PB - The Combinatorics Consortium UR - http://geodesic.mathdoc.fr/articles/10.5802/alco.288/ DO - 10.5802/alco.288 LA - en ID - ALCO_2023__6_4_955_0 ER -
%0 Journal Article %A Coutinho, Gabriel %A Juliano, Emanuel %A Spier, Thomás Jung %T Strong cospectrality in trees %J Algebraic Combinatorics %D 2023 %P 955-963 %V 6 %N 4 %I The Combinatorics Consortium %U http://geodesic.mathdoc.fr/articles/10.5802/alco.288/ %R 10.5802/alco.288 %G en %F ALCO_2023__6_4_955_0
Coutinho, Gabriel; Juliano, Emanuel; Spier, Thomás Jung. Strong cospectrality in trees. Algebraic Combinatorics, Tome 6 (2023) no. 4, pp. 955-963. doi: 10.5802/alco.288
Cité par Sources :