Voir la notice de l'article provenant de la source Numdam
We study two linear bases of the free associative algebra : one is formed by the Magnus polynomials of type and the other is its dual basis (formed by what we call the “demi-shuffle” polynomials) with respect to the standard pairing on the monomials of . As an application, we derive a formula of Le–Murakami, Furusho type that expresses arbitrary coefficients of a group-like series in terms of the “regular” coefficients of .
Nakamura, Hiroaki 1
@article{ALCO_2023__6_4_929_0, author = {Nakamura, Hiroaki}, title = {Demi-shuffle duals of {Magnus} polynomials in a free associative algebra}, journal = {Algebraic Combinatorics}, pages = {929--939}, publisher = {The Combinatorics Consortium}, volume = {6}, number = {4}, year = {2023}, doi = {10.5802/alco.287}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.5802/alco.287/} }
TY - JOUR AU - Nakamura, Hiroaki TI - Demi-shuffle duals of Magnus polynomials in a free associative algebra JO - Algebraic Combinatorics PY - 2023 SP - 929 EP - 939 VL - 6 IS - 4 PB - The Combinatorics Consortium UR - http://geodesic.mathdoc.fr/articles/10.5802/alco.287/ DO - 10.5802/alco.287 LA - en ID - ALCO_2023__6_4_929_0 ER -
%0 Journal Article %A Nakamura, Hiroaki %T Demi-shuffle duals of Magnus polynomials in a free associative algebra %J Algebraic Combinatorics %D 2023 %P 929-939 %V 6 %N 4 %I The Combinatorics Consortium %U http://geodesic.mathdoc.fr/articles/10.5802/alco.287/ %R 10.5802/alco.287 %G en %F ALCO_2023__6_4_929_0
Nakamura, Hiroaki. Demi-shuffle duals of Magnus polynomials in a free associative algebra. Algebraic Combinatorics, Tome 6 (2023) no. 4, pp. 929-939. doi: 10.5802/alco.287
Cité par Sources :