Bijecting hidden symmetries for skew staircase shapes
Algebraic Combinatorics, Tome 6 (2023) no. 4, pp. 1095-1118

Voir la notice de l'article provenant de la source Numdam

We present a bijection between the set SYT(λ/μ) of standard Young tableaux of staircase minus rectangle shape λ=δ k , μ=(b a ), and the set ShSYT (η) of marked shifted standard Young tableaux of a certain shifted shape η=η(k,a,b). Numerically, this result is due to DeWitt (2012). Combined with other known bijections this gives a bijective proof of the product formula for |SYT(λ/μ)|. This resolves an open problem by Morales, Pak and Panova (2019), and allows an efficient random sampling from SYT(λ/μ). Other applications include a bijection for semistandard Young tableaux, and a bijective proof of Stembridge’s symmetry of LR–coefficients of the staircase shape. We also extend these results to set-valued standard Young tableaux in the combinatorics of K-theory, leading to new proofs of results by Lewis and Marberg (2019) and Abney-McPeek, An and Ng (2020).

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/alco.285
Classification : 05E10, 05A19, 05E05, 17B10
Keywords: tableau, shifted tableau, Schur P-function, Worley–Sagan insertion, mixed shifted insertion, shifted Hecke insertion, Knuth class, shifted Knuth class, K-Knuth class, queer Lie superalgebra

Hamaker, Zachary 1 ; Morales, Alejandro H. 2 ; Pak, Igor 3 ; Serrano, Luis 4 ; Williams, Nathan 5

1 Department of Mathematics University of Florida Gainesville, FL 32611
2 Department of Mathematics and Statistics University of Massachusetts Amherst, MA 01003
3 Department of Mathematics University of California Los Angeles, CA 90095
4 Zapata Computing Canada Inc. 325 Front St. W Toronto, ON, M5V 2Y1
5 Department of Mathematical Sciences University of Texas at Dallas Richardson, TX 75080
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{ALCO_2023__6_4_1095_0,
     author = {Hamaker, Zachary and Morales, Alejandro H. and Pak, Igor and Serrano, Luis and Williams, Nathan},
     title = {Bijecting hidden symmetries for skew staircase shapes},
     journal = {Algebraic Combinatorics},
     pages = {1095--1118},
     publisher = {The Combinatorics Consortium},
     volume = {6},
     number = {4},
     year = {2023},
     doi = {10.5802/alco.285},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5802/alco.285/}
}
TY  - JOUR
AU  - Hamaker, Zachary
AU  - Morales, Alejandro H.
AU  - Pak, Igor
AU  - Serrano, Luis
AU  - Williams, Nathan
TI  - Bijecting hidden symmetries for skew staircase shapes
JO  - Algebraic Combinatorics
PY  - 2023
SP  - 1095
EP  - 1118
VL  - 6
IS  - 4
PB  - The Combinatorics Consortium
UR  - http://geodesic.mathdoc.fr/articles/10.5802/alco.285/
DO  - 10.5802/alco.285
LA  - en
ID  - ALCO_2023__6_4_1095_0
ER  - 
%0 Journal Article
%A Hamaker, Zachary
%A Morales, Alejandro H.
%A Pak, Igor
%A Serrano, Luis
%A Williams, Nathan
%T Bijecting hidden symmetries for skew staircase shapes
%J Algebraic Combinatorics
%D 2023
%P 1095-1118
%V 6
%N 4
%I The Combinatorics Consortium
%U http://geodesic.mathdoc.fr/articles/10.5802/alco.285/
%R 10.5802/alco.285
%G en
%F ALCO_2023__6_4_1095_0
Hamaker, Zachary; Morales, Alejandro H.; Pak, Igor; Serrano, Luis; Williams, Nathan. Bijecting hidden symmetries for skew staircase shapes. Algebraic Combinatorics, Tome 6 (2023) no. 4, pp. 1095-1118. doi: 10.5802/alco.285

Cité par Sources :