Voir la notice de l'article provenant de la source Numdam
We present a bijection between the set of standard Young tableaux of staircase minus rectangle shape , , and the set of marked shifted standard Young tableaux of a certain shifted shape . Numerically, this result is due to DeWitt (2012). Combined with other known bijections this gives a bijective proof of the product formula for . This resolves an open problem by Morales, Pak and Panova (2019), and allows an efficient random sampling from . Other applications include a bijection for semistandard Young tableaux, and a bijective proof of Stembridge’s symmetry of LR–coefficients of the staircase shape. We also extend these results to set-valued standard Young tableaux in the combinatorics of -theory, leading to new proofs of results by Lewis and Marberg (2019) and Abney-McPeek, An and Ng (2020).
Hamaker, Zachary 1 ; Morales, Alejandro H. 2 ; Pak, Igor 3 ; Serrano, Luis 4 ; Williams, Nathan 5
@article{ALCO_2023__6_4_1095_0, author = {Hamaker, Zachary and Morales, Alejandro H. and Pak, Igor and Serrano, Luis and Williams, Nathan}, title = {Bijecting hidden symmetries for skew staircase shapes}, journal = {Algebraic Combinatorics}, pages = {1095--1118}, publisher = {The Combinatorics Consortium}, volume = {6}, number = {4}, year = {2023}, doi = {10.5802/alco.285}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.5802/alco.285/} }
TY - JOUR AU - Hamaker, Zachary AU - Morales, Alejandro H. AU - Pak, Igor AU - Serrano, Luis AU - Williams, Nathan TI - Bijecting hidden symmetries for skew staircase shapes JO - Algebraic Combinatorics PY - 2023 SP - 1095 EP - 1118 VL - 6 IS - 4 PB - The Combinatorics Consortium UR - http://geodesic.mathdoc.fr/articles/10.5802/alco.285/ DO - 10.5802/alco.285 LA - en ID - ALCO_2023__6_4_1095_0 ER -
%0 Journal Article %A Hamaker, Zachary %A Morales, Alejandro H. %A Pak, Igor %A Serrano, Luis %A Williams, Nathan %T Bijecting hidden symmetries for skew staircase shapes %J Algebraic Combinatorics %D 2023 %P 1095-1118 %V 6 %N 4 %I The Combinatorics Consortium %U http://geodesic.mathdoc.fr/articles/10.5802/alco.285/ %R 10.5802/alco.285 %G en %F ALCO_2023__6_4_1095_0
Hamaker, Zachary; Morales, Alejandro H.; Pak, Igor; Serrano, Luis; Williams, Nathan. Bijecting hidden symmetries for skew staircase shapes. Algebraic Combinatorics, Tome 6 (2023) no. 4, pp. 1095-1118. doi: 10.5802/alco.285
Cité par Sources :