Voir la notice de l'article provenant de la source Numdam
For any graph, we show that the graded permutation representation of the graph automorphism group given by matchings is strongly equivariantly log-concave. The proof gives a family of equivariant injections inspired by a combinatorial map of Krattenthaler and reduces to the equivariant hard Lefschetz theorem.
Li, Shiyue 1
@article{ALCO_2023__6_3_615_0, author = {Li, Shiyue}, title = {Equivariant log-concavity of graph matchings}, journal = {Algebraic Combinatorics}, pages = {615--622}, publisher = {The Combinatorics Consortium}, volume = {6}, number = {3}, year = {2023}, doi = {10.5802/alco.284}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.5802/alco.284/} }
TY - JOUR AU - Li, Shiyue TI - Equivariant log-concavity of graph matchings JO - Algebraic Combinatorics PY - 2023 SP - 615 EP - 622 VL - 6 IS - 3 PB - The Combinatorics Consortium UR - http://geodesic.mathdoc.fr/articles/10.5802/alco.284/ DO - 10.5802/alco.284 LA - en ID - ALCO_2023__6_3_615_0 ER -
Li, Shiyue. Equivariant log-concavity of graph matchings. Algebraic Combinatorics, Tome 6 (2023) no. 3, pp. 615-622. doi: 10.5802/alco.284
Cité par Sources :