Equivariant log-concavity of graph matchings
Algebraic Combinatorics, Tome 6 (2023) no. 3, pp. 615-622

Voir la notice de l'article provenant de la source Numdam

For any graph, we show that the graded permutation representation of the graph automorphism group given by matchings is strongly equivariantly log-concave. The proof gives a family of equivariant injections inspired by a combinatorial map of Krattenthaler and reduces to the equivariant hard Lefschetz theorem.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/alco.284
Classification : 10X99, 14A12, 11L05
Keywords: Equivariant log-concavity, graph matchings, the hard Lefschetz theorem

Li, Shiyue 1

1 Brown University Departmenet of Mathematics 151 Thayer Street Providence RI 02912 (USA)
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{ALCO_2023__6_3_615_0,
     author = {Li, Shiyue},
     title = {Equivariant log-concavity of graph matchings},
     journal = {Algebraic Combinatorics},
     pages = {615--622},
     publisher = {The Combinatorics Consortium},
     volume = {6},
     number = {3},
     year = {2023},
     doi = {10.5802/alco.284},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5802/alco.284/}
}
TY  - JOUR
AU  - Li, Shiyue
TI  - Equivariant log-concavity of graph matchings
JO  - Algebraic Combinatorics
PY  - 2023
SP  - 615
EP  - 622
VL  - 6
IS  - 3
PB  - The Combinatorics Consortium
UR  - http://geodesic.mathdoc.fr/articles/10.5802/alco.284/
DO  - 10.5802/alco.284
LA  - en
ID  - ALCO_2023__6_3_615_0
ER  - 
%0 Journal Article
%A Li, Shiyue
%T Equivariant log-concavity of graph matchings
%J Algebraic Combinatorics
%D 2023
%P 615-622
%V 6
%N 3
%I The Combinatorics Consortium
%U http://geodesic.mathdoc.fr/articles/10.5802/alco.284/
%R 10.5802/alco.284
%G en
%F ALCO_2023__6_3_615_0
Li, Shiyue. Equivariant log-concavity of graph matchings. Algebraic Combinatorics, Tome 6 (2023) no. 3, pp. 615-622. doi: 10.5802/alco.284

Cité par Sources :