Voir la notice de l'article provenant de la source Numdam
The cactus group acts on the set of standard Young tableaux of a given shape by (partial) Schützenberger involutions. It is natural to extend this action to the corresponding Specht module by identifying standard Young tableaux with the Kazhdan–Lusztig basis. We term these representations of the cactus group “Schützenberger modules”, denoted , and in this paper we investigate their decomposition into irreducible components. We prove that when is a hook shape, the cactus group action on factors through and the resulting multiplicities are given by Kostka coefficients. Our proof relies on results of Berenstein and Kirillov and Chmutov, Glick, and Pylyavskyy.
Lim, Jongmin 1 ; Yacobi, Oded 2
@article{ALCO_2023__6_3_773_0, author = {Lim, Jongmin and Yacobi, Oded}, title = {On {Sch\"utzenberger} modules of the cactus group}, journal = {Algebraic Combinatorics}, pages = {773--788}, publisher = {The Combinatorics Consortium}, volume = {6}, number = {3}, year = {2023}, doi = {10.5802/alco.283}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.5802/alco.283/} }
TY - JOUR AU - Lim, Jongmin AU - Yacobi, Oded TI - On Schützenberger modules of the cactus group JO - Algebraic Combinatorics PY - 2023 SP - 773 EP - 788 VL - 6 IS - 3 PB - The Combinatorics Consortium UR - http://geodesic.mathdoc.fr/articles/10.5802/alco.283/ DO - 10.5802/alco.283 LA - en ID - ALCO_2023__6_3_773_0 ER -
Lim, Jongmin; Yacobi, Oded. On Schützenberger modules of the cactus group. Algebraic Combinatorics, Tome 6 (2023) no. 3, pp. 773-788. doi: 10.5802/alco.283
Cité par Sources :