On Schützenberger modules of the cactus group
Algebraic Combinatorics, Tome 6 (2023) no. 3, pp. 773-788

Voir la notice de l'article provenant de la source Numdam

The cactus group acts on the set of standard Young tableaux of a given shape by (partial) Schützenberger involutions. It is natural to extend this action to the corresponding Specht module by identifying standard Young tableaux with the Kazhdan–Lusztig basis. We term these representations of the cactus group “Schützenberger modules”, denoted S Sch λ , and in this paper we investigate their decomposition into irreducible components. We prove that when λ is a hook shape, the cactus group action on S Sch λ factors through S n-1 and the resulting multiplicities are given by Kostka coefficients. Our proof relies on results of Berenstein and Kirillov and Chmutov, Glick, and Pylyavskyy.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/alco.283
Classification : 05E10, 05E18, 20C30
Keywords: Kazhdan-Lusztig basis, crystal, cactus group, Young tableaux, Kotska numbers

Lim, Jongmin 1 ; Yacobi, Oded 2

1 J. Lim: School of Mathematics and Statistics University of Sydney Australia
2 O. Yacobi: School of Mathematics and Statistics University of Sydney Australia
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{ALCO_2023__6_3_773_0,
     author = {Lim, Jongmin and Yacobi, Oded},
     title = {On {Sch\"utzenberger} modules of the cactus group},
     journal = {Algebraic Combinatorics},
     pages = {773--788},
     publisher = {The Combinatorics Consortium},
     volume = {6},
     number = {3},
     year = {2023},
     doi = {10.5802/alco.283},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5802/alco.283/}
}
TY  - JOUR
AU  - Lim, Jongmin
AU  - Yacobi, Oded
TI  - On Schützenberger modules of the cactus group
JO  - Algebraic Combinatorics
PY  - 2023
SP  - 773
EP  - 788
VL  - 6
IS  - 3
PB  - The Combinatorics Consortium
UR  - http://geodesic.mathdoc.fr/articles/10.5802/alco.283/
DO  - 10.5802/alco.283
LA  - en
ID  - ALCO_2023__6_3_773_0
ER  - 
%0 Journal Article
%A Lim, Jongmin
%A Yacobi, Oded
%T On Schützenberger modules of the cactus group
%J Algebraic Combinatorics
%D 2023
%P 773-788
%V 6
%N 3
%I The Combinatorics Consortium
%U http://geodesic.mathdoc.fr/articles/10.5802/alco.283/
%R 10.5802/alco.283
%G en
%F ALCO_2023__6_3_773_0
Lim, Jongmin; Yacobi, Oded. On Schützenberger modules of the cactus group. Algebraic Combinatorics, Tome 6 (2023) no. 3, pp. 773-788. doi: 10.5802/alco.283

Cité par Sources :