Voir la notice de l'article provenant de la source Numdam
Let be a prime power and define , for a nonnegative integer . Let denote the set of all subspaces of , the -dimensional -vector space of all column vectors with components.
Define a complex matrix with entries given by
We think of as a -analog of the adjacency matrix of the -cube. We show that the eigenvalues of are
and we write down an explicit canonical eigenbasis of . We give a weighted count of the number of rooted spanning trees in the -analog of the -cube.
Ghosh, Subhajit 1 ; Srinivasan, Murali K. 2
@article{ALCO_2023__6_3_707_0, author = {Ghosh, Subhajit and Srinivasan, Murali K.}, title = {A $q$-analog of the adjacency matrix of the $n$-cube}, journal = {Algebraic Combinatorics}, pages = {707--725}, publisher = {The Combinatorics Consortium}, volume = {6}, number = {3}, year = {2023}, doi = {10.5802/alco.282}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.5802/alco.282/} }
TY - JOUR AU - Ghosh, Subhajit AU - Srinivasan, Murali K. TI - A $q$-analog of the adjacency matrix of the $n$-cube JO - Algebraic Combinatorics PY - 2023 SP - 707 EP - 725 VL - 6 IS - 3 PB - The Combinatorics Consortium UR - http://geodesic.mathdoc.fr/articles/10.5802/alco.282/ DO - 10.5802/alco.282 LA - en ID - ALCO_2023__6_3_707_0 ER -
%0 Journal Article %A Ghosh, Subhajit %A Srinivasan, Murali K. %T A $q$-analog of the adjacency matrix of the $n$-cube %J Algebraic Combinatorics %D 2023 %P 707-725 %V 6 %N 3 %I The Combinatorics Consortium %U http://geodesic.mathdoc.fr/articles/10.5802/alco.282/ %R 10.5802/alco.282 %G en %F ALCO_2023__6_3_707_0
Ghosh, Subhajit; Srinivasan, Murali K. A $q$-analog of the adjacency matrix of the $n$-cube. Algebraic Combinatorics, Tome 6 (2023) no. 3, pp. 707-725. doi: 10.5802/alco.282
Cité par Sources :