A q-analog of the adjacency matrix of the n-cube
Algebraic Combinatorics, Tome 6 (2023) no. 3, pp. 707-725

Voir la notice de l'article provenant de la source Numdam

Let q be a prime power and define (n) q =1+q+q 2 ++q n-1 , for a nonnegative integer n. Let B q (n) denote the set of all subspaces of 𝔽 q n , the n-dimensional 𝔽q-vector space of all column vectors with n components.

Define a B q (n)×B q (n) complex matrix M q (n) with entries given by

M q (n)(X,Y)=1ifYX,dim(Y)=dim(X)-1,q k ifXY,dim(Y)=k+1,dim(X)=k,0otherwise.

We think of M q (n) as a q-analog of the adjacency matrix of the n-cube. We show that the eigenvalues of M q (n) are

(n-k) q -(k) q withmultiplicityn k q ,k=0,1,...,n,

and we write down an explicit canonical eigenbasis of M q (n). We give a weighted count of the number of rooted spanning trees in the q-analog of the n-cube.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/alco.282
Classification : 05E18, 05C81, 20C30
Keywords: $n$-cube, $q$-analog

Ghosh, Subhajit 1 ; Srinivasan, Murali K. 2

1 Bar-Ilan University Department of Mathematics Ramat-Gan 5290002 (Israel)
2 Indian Institute of Technology, Bombay Department of Mathematics Powai, Mumbai 400076 (India)
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{ALCO_2023__6_3_707_0,
     author = {Ghosh, Subhajit and Srinivasan, Murali K.},
     title = {A $q$-analog of the adjacency matrix of the $n$-cube},
     journal = {Algebraic Combinatorics},
     pages = {707--725},
     publisher = {The Combinatorics Consortium},
     volume = {6},
     number = {3},
     year = {2023},
     doi = {10.5802/alco.282},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5802/alco.282/}
}
TY  - JOUR
AU  - Ghosh, Subhajit
AU  - Srinivasan, Murali K.
TI  - A $q$-analog of the adjacency matrix of the $n$-cube
JO  - Algebraic Combinatorics
PY  - 2023
SP  - 707
EP  - 725
VL  - 6
IS  - 3
PB  - The Combinatorics Consortium
UR  - http://geodesic.mathdoc.fr/articles/10.5802/alco.282/
DO  - 10.5802/alco.282
LA  - en
ID  - ALCO_2023__6_3_707_0
ER  - 
%0 Journal Article
%A Ghosh, Subhajit
%A Srinivasan, Murali K.
%T A $q$-analog of the adjacency matrix of the $n$-cube
%J Algebraic Combinatorics
%D 2023
%P 707-725
%V 6
%N 3
%I The Combinatorics Consortium
%U http://geodesic.mathdoc.fr/articles/10.5802/alco.282/
%R 10.5802/alco.282
%G en
%F ALCO_2023__6_3_707_0
Ghosh, Subhajit; Srinivasan, Murali K. A $q$-analog of the adjacency matrix of the $n$-cube. Algebraic Combinatorics, Tome 6 (2023) no. 3, pp. 707-725. doi: 10.5802/alco.282

Cité par Sources :