Voir la notice de l'article provenant de la source Numdam
We study the way in which equivariant Kazhdan–Lusztig polynomials, equivariant inverse Kazhdan–Lusztig polynomials, and equivariant -polynomials of matroids change under the operation of relaxation of a collection of stressed hyperplanes. This allows us to compute these polynomials for arbitrary paving matroids, which we do in a number of examples, including various matroids associated with Steiner systems that admit actions of Mathieu groups.
Karn, Trevor 1 ; Nasr, George D. 2 ; Proudfoot, Nicholas 2 ; Vecchi, Lorenzo 3
@article{ALCO_2023__6_3_677_0, author = {Karn, Trevor and Nasr, George D. and Proudfoot, Nicholas and Vecchi, Lorenzo}, title = {Equivariant {Kazhdan{\textendash}Lusztig} theory of paving matroids}, journal = {Algebraic Combinatorics}, pages = {677--688}, publisher = {The Combinatorics Consortium}, volume = {6}, number = {3}, year = {2023}, doi = {10.5802/alco.281}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.5802/alco.281/} }
TY - JOUR AU - Karn, Trevor AU - Nasr, George D. AU - Proudfoot, Nicholas AU - Vecchi, Lorenzo TI - Equivariant Kazhdan–Lusztig theory of paving matroids JO - Algebraic Combinatorics PY - 2023 SP - 677 EP - 688 VL - 6 IS - 3 PB - The Combinatorics Consortium UR - http://geodesic.mathdoc.fr/articles/10.5802/alco.281/ DO - 10.5802/alco.281 LA - en ID - ALCO_2023__6_3_677_0 ER -
%0 Journal Article %A Karn, Trevor %A Nasr, George D. %A Proudfoot, Nicholas %A Vecchi, Lorenzo %T Equivariant Kazhdan–Lusztig theory of paving matroids %J Algebraic Combinatorics %D 2023 %P 677-688 %V 6 %N 3 %I The Combinatorics Consortium %U http://geodesic.mathdoc.fr/articles/10.5802/alco.281/ %R 10.5802/alco.281 %G en %F ALCO_2023__6_3_677_0
Karn, Trevor; Nasr, George D.; Proudfoot, Nicholas; Vecchi, Lorenzo. Equivariant Kazhdan–Lusztig theory of paving matroids. Algebraic Combinatorics, Tome 6 (2023) no. 3, pp. 677-688. doi: 10.5802/alco.281
Cité par Sources :