Voir la notice de l'article provenant de la source Numdam
Motivated by higher homological algebra, we associate quivers to triangulations of even-dimensional cyclic polytopes and prove two results showing what information about the triangulation is encoded in the quiver. We first show that the cut quivers of Iyama and Oppermann correspond precisely to -dimensional triangulations without interior -simplices. This implies that these triangulations form a connected subgraph of the flip graph. Our second result shows how the quiver of a triangulation can be used to identify mutable internal -simplices. This points towards what a theory of higher-dimensional quiver mutation might look like and gives a new way of understanding flips of triangulations of even-dimensional cyclic polytopes.
Williams, Nicholas J. 1
@article{ALCO_2023__6_3_639_0, author = {Williams, Nicholas J.}, title = {Quiver combinatorics and triangulations of cyclic polytopes}, journal = {Algebraic Combinatorics}, pages = {639--660}, publisher = {The Combinatorics Consortium}, volume = {6}, number = {3}, year = {2023}, doi = {10.5802/alco.280}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.5802/alco.280/} }
TY - JOUR AU - Williams, Nicholas J. TI - Quiver combinatorics and triangulations of cyclic polytopes JO - Algebraic Combinatorics PY - 2023 SP - 639 EP - 660 VL - 6 IS - 3 PB - The Combinatorics Consortium UR - http://geodesic.mathdoc.fr/articles/10.5802/alco.280/ DO - 10.5802/alco.280 LA - en ID - ALCO_2023__6_3_639_0 ER -
%0 Journal Article %A Williams, Nicholas J. %T Quiver combinatorics and triangulations of cyclic polytopes %J Algebraic Combinatorics %D 2023 %P 639-660 %V 6 %N 3 %I The Combinatorics Consortium %U http://geodesic.mathdoc.fr/articles/10.5802/alco.280/ %R 10.5802/alco.280 %G en %F ALCO_2023__6_3_639_0
Williams, Nicholas J. Quiver combinatorics and triangulations of cyclic polytopes. Algebraic Combinatorics, Tome 6 (2023) no. 3, pp. 639-660. doi: 10.5802/alco.280
Cité par Sources :