Quiver combinatorics and triangulations of cyclic polytopes
Algebraic Combinatorics, Tome 6 (2023) no. 3, pp. 639-660

Voir la notice de l'article provenant de la source Numdam

Motivated by higher homological algebra, we associate quivers to triangulations of even-dimensional cyclic polytopes and prove two results showing what information about the triangulation is encoded in the quiver. We first show that the cut quivers of Iyama and Oppermann correspond precisely to 2d-dimensional triangulations without interior (d+1)-simplices. This implies that these triangulations form a connected subgraph of the flip graph. Our second result shows how the quiver of a triangulation can be used to identify mutable internal d-simplices. This points towards what a theory of higher-dimensional quiver mutation might look like and gives a new way of understanding flips of triangulations of even-dimensional cyclic polytopes.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/alco.280
Classification : 52B05, 05E10, 52B11
Keywords: Cyclic polytopes, triangulations, quivers, mutation

Williams, Nicholas J. 1

1 Department of Mathematics and Statistics Fylde College Lancaster University Lancaster LA1 4YF United Kingdom
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{ALCO_2023__6_3_639_0,
     author = {Williams, Nicholas J.},
     title = {Quiver combinatorics and triangulations of cyclic polytopes},
     journal = {Algebraic Combinatorics},
     pages = {639--660},
     publisher = {The Combinatorics Consortium},
     volume = {6},
     number = {3},
     year = {2023},
     doi = {10.5802/alco.280},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5802/alco.280/}
}
TY  - JOUR
AU  - Williams, Nicholas J.
TI  - Quiver combinatorics and triangulations of cyclic polytopes
JO  - Algebraic Combinatorics
PY  - 2023
SP  - 639
EP  - 660
VL  - 6
IS  - 3
PB  - The Combinatorics Consortium
UR  - http://geodesic.mathdoc.fr/articles/10.5802/alco.280/
DO  - 10.5802/alco.280
LA  - en
ID  - ALCO_2023__6_3_639_0
ER  - 
%0 Journal Article
%A Williams, Nicholas J.
%T Quiver combinatorics and triangulations of cyclic polytopes
%J Algebraic Combinatorics
%D 2023
%P 639-660
%V 6
%N 3
%I The Combinatorics Consortium
%U http://geodesic.mathdoc.fr/articles/10.5802/alco.280/
%R 10.5802/alco.280
%G en
%F ALCO_2023__6_3_639_0
Williams, Nicholas J. Quiver combinatorics and triangulations of cyclic polytopes. Algebraic Combinatorics, Tome 6 (2023) no. 3, pp. 639-660. doi: 10.5802/alco.280

Cité par Sources :