Voir la notice de l'article provenant de la source Numdam
We investigate the class of Kazhdan–Lusztig varieties, and its subclass of matrix Schubert varieties, endowed with a naturally defined torus action. Writing a matrix Schubert variety as (where is maximal possible), we show that can be of complexity- exactly when . Also, we give a combinatorial description of the extremal rays of the weight cone of a Kazhdan–Lusztig variety, which in particular turns out to be the edge cone of an acyclic directed graph. As a consequence we show that given permutations and , the complexity of Kazhdan–Lusztig variety indexed by is the same as the complexity of the Richardson variety indexed by . Finally, we use this description to compute the complexity of certain Kazhdan–Lusztig varieties.
Donten-Bury, Maria 1 ; Escobar, Laura 2 ; Portakal, Irem 3
@article{ALCO_2023__6_3_835_0, author = {Donten-Bury, Maria and Escobar, Laura and Portakal, Irem}, title = {Complexity of the usual torus action on {Kazhdan{\textendash}Lusztig} varieties}, journal = {Algebraic Combinatorics}, pages = {835--861}, publisher = {The Combinatorics Consortium}, volume = {6}, number = {3}, year = {2023}, doi = {10.5802/alco.279}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.5802/alco.279/} }
TY - JOUR AU - Donten-Bury, Maria AU - Escobar, Laura AU - Portakal, Irem TI - Complexity of the usual torus action on Kazhdan–Lusztig varieties JO - Algebraic Combinatorics PY - 2023 SP - 835 EP - 861 VL - 6 IS - 3 PB - The Combinatorics Consortium UR - http://geodesic.mathdoc.fr/articles/10.5802/alco.279/ DO - 10.5802/alco.279 LA - en ID - ALCO_2023__6_3_835_0 ER -
%0 Journal Article %A Donten-Bury, Maria %A Escobar, Laura %A Portakal, Irem %T Complexity of the usual torus action on Kazhdan–Lusztig varieties %J Algebraic Combinatorics %D 2023 %P 835-861 %V 6 %N 3 %I The Combinatorics Consortium %U http://geodesic.mathdoc.fr/articles/10.5802/alco.279/ %R 10.5802/alco.279 %G en %F ALCO_2023__6_3_835_0
Donten-Bury, Maria; Escobar, Laura; Portakal, Irem. Complexity of the usual torus action on Kazhdan–Lusztig varieties. Algebraic Combinatorics, Tome 6 (2023) no. 3, pp. 835-861. doi: 10.5802/alco.279
Cité par Sources :