Complexity of the usual torus action on Kazhdan–Lusztig varieties
Algebraic Combinatorics, Tome 6 (2023) no. 3, pp. 835-861

Voir la notice de l'article provenant de la source Numdam

We investigate the class of Kazhdan–Lusztig varieties, and its subclass of matrix Schubert varieties, endowed with a naturally defined torus action. Writing a matrix Schubert variety X w ¯ as X w ¯=Y w × d (where d is maximal possible), we show that Y w can be of complexity-k exactly when k1. Also, we give a combinatorial description of the extremal rays of the weight cone of a Kazhdan–Lusztig variety, which in particular turns out to be the edge cone of an acyclic directed graph. As a consequence we show that given permutations v and w, the complexity of Kazhdan–Lusztig variety indexed by (v,w) is the same as the complexity of the Richardson variety indexed by (v,w). Finally, we use this description to compute the complexity of certain Kazhdan–Lusztig varieties.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/alco.279
Classification : 14M15, 14M25, 52B20, 05E10, 05C20
Keywords: Schubert variety, Kazhdan–Lusztig variety, weight cone, torus action, toric variety, $T$-variety, edge cone, directed graph.

Donten-Bury, Maria 1 ; Escobar, Laura 2 ; Portakal, Irem 3

1 University of Warsaw Institute of Mathematics Banacha 2 02-097 Warszawa Poland
2 Department of Mathematics and Statistics Washington University in St. Louis One Brookings Drive St. Louis, Missouri 63130 U.S.A.
3 Technische Universität München Lehrstuhl für Mathematische Statistik 85748 Garching b. München Boltzmannstr. 3
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{ALCO_2023__6_3_835_0,
     author = {Donten-Bury, Maria and Escobar, Laura and Portakal, Irem},
     title = {Complexity of the usual torus action on {Kazhdan{\textendash}Lusztig} varieties},
     journal = {Algebraic Combinatorics},
     pages = {835--861},
     publisher = {The Combinatorics Consortium},
     volume = {6},
     number = {3},
     year = {2023},
     doi = {10.5802/alco.279},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5802/alco.279/}
}
TY  - JOUR
AU  - Donten-Bury, Maria
AU  - Escobar, Laura
AU  - Portakal, Irem
TI  - Complexity of the usual torus action on Kazhdan–Lusztig varieties
JO  - Algebraic Combinatorics
PY  - 2023
SP  - 835
EP  - 861
VL  - 6
IS  - 3
PB  - The Combinatorics Consortium
UR  - http://geodesic.mathdoc.fr/articles/10.5802/alco.279/
DO  - 10.5802/alco.279
LA  - en
ID  - ALCO_2023__6_3_835_0
ER  - 
%0 Journal Article
%A Donten-Bury, Maria
%A Escobar, Laura
%A Portakal, Irem
%T Complexity of the usual torus action on Kazhdan–Lusztig varieties
%J Algebraic Combinatorics
%D 2023
%P 835-861
%V 6
%N 3
%I The Combinatorics Consortium
%U http://geodesic.mathdoc.fr/articles/10.5802/alco.279/
%R 10.5802/alco.279
%G en
%F ALCO_2023__6_3_835_0
Donten-Bury, Maria; Escobar, Laura; Portakal, Irem. Complexity of the usual torus action on Kazhdan–Lusztig varieties. Algebraic Combinatorics, Tome 6 (2023) no. 3, pp. 835-861. doi: 10.5802/alco.279

Cité par Sources :