Frozen pipes: lattice models for Grothendieck polynomials
Algebraic Combinatorics, Tome 6 (2023) no. 3, pp. 789-833

Voir la notice de l'article provenant de la source Numdam

We introduce families of two-parameter multivariate polynomials indexed by pairs of partitions v,wbiaxial double (β,q)-Grothendieck polynomials – which specialize at q=0 and v=1 to double β-Grothendieck polynomials from torus-equivariant connective K-theory. Initially defined recursively via divided difference operators, our main result is that these new polynomials arise as partition functions of solvable lattice models. Moreover, the associated quantum group of the solvable model for polynomials in n pairs of variables is a Drinfeld twist of the U q (𝔰𝔩 ^ n+1 ) R-matrix. By leveraging the resulting Yang-Baxter equations of the lattice model, we show that these polynomials simultaneously generalize double β-Grothendieck polynomials and dual double β-Grothendieck polynomials for arbitrary permutations. We then use properties of the model and Yang-Baxter equations to reprove Fomin–Kirillov’s Cauchy identity for β-Grothendieck polynomials, generalize it to a new Cauchy identity for biaxial double β-Grothendieck polynomials, and prove a new branching rule for double β-Grothendieck polynomials.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/alco.277
Classification : 05E14
Keywords: Grothendieck polynomial, lattice model, Yang-Baxter equation, Cauchy identity, equivariant K-theory

Brubaker, Ben 1 ; Frechette, Claire 2 ; Hardt, Andrew 3 ; Tibor, Emily 1 ; Weber, Katherine 1

1 University of Minnesota School of Mathematics 206 Church St. SE Minneapolis MN 55455 (USA)
2 Boston College Mathematics Department 140 Commonwealth Avenue Chestnut Hill MA 02467 (USA)
3 Stanford University Department of Mathematics Building 380 Stanford California 94305 (USA)
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{ALCO_2023__6_3_789_0,
     author = {Brubaker, Ben and Frechette, Claire and Hardt, Andrew and Tibor, Emily and Weber, Katherine},
     title = {Frozen pipes: lattice models for {Grothendieck} polynomials},
     journal = {Algebraic Combinatorics},
     pages = {789--833},
     publisher = {The Combinatorics Consortium},
     volume = {6},
     number = {3},
     year = {2023},
     doi = {10.5802/alco.277},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5802/alco.277/}
}
TY  - JOUR
AU  - Brubaker, Ben
AU  - Frechette, Claire
AU  - Hardt, Andrew
AU  - Tibor, Emily
AU  - Weber, Katherine
TI  - Frozen pipes: lattice models for Grothendieck polynomials
JO  - Algebraic Combinatorics
PY  - 2023
SP  - 789
EP  - 833
VL  - 6
IS  - 3
PB  - The Combinatorics Consortium
UR  - http://geodesic.mathdoc.fr/articles/10.5802/alco.277/
DO  - 10.5802/alco.277
LA  - en
ID  - ALCO_2023__6_3_789_0
ER  - 
%0 Journal Article
%A Brubaker, Ben
%A Frechette, Claire
%A Hardt, Andrew
%A Tibor, Emily
%A Weber, Katherine
%T Frozen pipes: lattice models for Grothendieck polynomials
%J Algebraic Combinatorics
%D 2023
%P 789-833
%V 6
%N 3
%I The Combinatorics Consortium
%U http://geodesic.mathdoc.fr/articles/10.5802/alco.277/
%R 10.5802/alco.277
%G en
%F ALCO_2023__6_3_789_0
Brubaker, Ben; Frechette, Claire; Hardt, Andrew; Tibor, Emily; Weber, Katherine. Frozen pipes: lattice models for Grothendieck polynomials. Algebraic Combinatorics, Tome 6 (2023) no. 3, pp. 789-833. doi: 10.5802/alco.277

Cité par Sources :