Voir la notice de l'article provenant de la source Numdam
We introduce families of two-parameter multivariate polynomials indexed by pairs of partitions – biaxial double -Grothendieck polynomials – which specialize at and to double -Grothendieck polynomials from torus-equivariant connective K-theory. Initially defined recursively via divided difference operators, our main result is that these new polynomials arise as partition functions of solvable lattice models. Moreover, the associated quantum group of the solvable model for polynomials in pairs of variables is a Drinfeld twist of the -matrix. By leveraging the resulting Yang-Baxter equations of the lattice model, we show that these polynomials simultaneously generalize double -Grothendieck polynomials and dual double -Grothendieck polynomials for arbitrary permutations. We then use properties of the model and Yang-Baxter equations to reprove Fomin–Kirillov’s Cauchy identity for -Grothendieck polynomials, generalize it to a new Cauchy identity for biaxial double -Grothendieck polynomials, and prove a new branching rule for double -Grothendieck polynomials.
Brubaker, Ben 1 ; Frechette, Claire 2 ; Hardt, Andrew 3 ; Tibor, Emily 1 ; Weber, Katherine 1
@article{ALCO_2023__6_3_789_0, author = {Brubaker, Ben and Frechette, Claire and Hardt, Andrew and Tibor, Emily and Weber, Katherine}, title = {Frozen pipes: lattice models for {Grothendieck} polynomials}, journal = {Algebraic Combinatorics}, pages = {789--833}, publisher = {The Combinatorics Consortium}, volume = {6}, number = {3}, year = {2023}, doi = {10.5802/alco.277}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.5802/alco.277/} }
TY - JOUR AU - Brubaker, Ben AU - Frechette, Claire AU - Hardt, Andrew AU - Tibor, Emily AU - Weber, Katherine TI - Frozen pipes: lattice models for Grothendieck polynomials JO - Algebraic Combinatorics PY - 2023 SP - 789 EP - 833 VL - 6 IS - 3 PB - The Combinatorics Consortium UR - http://geodesic.mathdoc.fr/articles/10.5802/alco.277/ DO - 10.5802/alco.277 LA - en ID - ALCO_2023__6_3_789_0 ER -
%0 Journal Article %A Brubaker, Ben %A Frechette, Claire %A Hardt, Andrew %A Tibor, Emily %A Weber, Katherine %T Frozen pipes: lattice models for Grothendieck polynomials %J Algebraic Combinatorics %D 2023 %P 789-833 %V 6 %N 3 %I The Combinatorics Consortium %U http://geodesic.mathdoc.fr/articles/10.5802/alco.277/ %R 10.5802/alco.277 %G en %F ALCO_2023__6_3_789_0
Brubaker, Ben; Frechette, Claire; Hardt, Andrew; Tibor, Emily; Weber, Katherine. Frozen pipes: lattice models for Grothendieck polynomials. Algebraic Combinatorics, Tome 6 (2023) no. 3, pp. 789-833. doi: 10.5802/alco.277
Cité par Sources :