Voir la notice de l'article provenant de la source Numdam
A famous conjecture of Stanley states that his chromatic symmetric function distinguishes trees. As a quasisymmetric analogue, we conjecture that the chromatic quasisymmetric function of Shareshian and Wachs and of Ellzey distinguishes directed trees. This latter conjecture would be implied by an affirmative answer to a question of Hasebe and Tsujie about the -partition enumerator distinguishing posets whose Hasse diagrams are trees. They proved the case of rooted trees and our results include a generalization of their result.
Aval, Jean-Christophe 1 ; Djenabou, Karimatou 2 ; McNamara, Peter R. W. 3
@article{ALCO_2023__6_3_595_0, author = {Aval, Jean-Christophe and Djenabou, Karimatou and McNamara, Peter R. W.}, title = {Quasisymmetric functions distinguishing trees}, journal = {Algebraic Combinatorics}, pages = {595--614}, publisher = {The Combinatorics Consortium}, volume = {6}, number = {3}, year = {2023}, doi = {10.5802/alco.273}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.5802/alco.273/} }
TY - JOUR AU - Aval, Jean-Christophe AU - Djenabou, Karimatou AU - McNamara, Peter R. W. TI - Quasisymmetric functions distinguishing trees JO - Algebraic Combinatorics PY - 2023 SP - 595 EP - 614 VL - 6 IS - 3 PB - The Combinatorics Consortium UR - http://geodesic.mathdoc.fr/articles/10.5802/alco.273/ DO - 10.5802/alco.273 LA - en ID - ALCO_2023__6_3_595_0 ER -
%0 Journal Article %A Aval, Jean-Christophe %A Djenabou, Karimatou %A McNamara, Peter R. W. %T Quasisymmetric functions distinguishing trees %J Algebraic Combinatorics %D 2023 %P 595-614 %V 6 %N 3 %I The Combinatorics Consortium %U http://geodesic.mathdoc.fr/articles/10.5802/alco.273/ %R 10.5802/alco.273 %G en %F ALCO_2023__6_3_595_0
Aval, Jean-Christophe; Djenabou, Karimatou; McNamara, Peter R. W. Quasisymmetric functions distinguishing trees. Algebraic Combinatorics, Tome 6 (2023) no. 3, pp. 595-614. doi: 10.5802/alco.273
Cité par Sources :