Voir la notice de l'article provenant de la source Numdam
Let be the ring of integers of an algebraic number field embedded into . Let be a subset of the Euclidean space , and be the set of the squared distances of two distinct points in . In this paper, we prove that if and there exist values distinct modulo a prime ideal of such that each is not zero modulo and each element of is congruent to some , then .
Nozaki, Hiroshi 1
@article{ALCO_2023__6_2_539_0, author = {Nozaki, Hiroshi}, title = {Bounds for sets with few distances distinct modulo a prime ideal}, journal = {Algebraic Combinatorics}, pages = {539--545}, publisher = {The Combinatorics Consortium}, volume = {6}, number = {2}, year = {2023}, doi = {10.5802/alco.272}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.5802/alco.272/} }
TY - JOUR AU - Nozaki, Hiroshi TI - Bounds for sets with few distances distinct modulo a prime ideal JO - Algebraic Combinatorics PY - 2023 SP - 539 EP - 545 VL - 6 IS - 2 PB - The Combinatorics Consortium UR - http://geodesic.mathdoc.fr/articles/10.5802/alco.272/ DO - 10.5802/alco.272 LA - en ID - ALCO_2023__6_2_539_0 ER -
%0 Journal Article %A Nozaki, Hiroshi %T Bounds for sets with few distances distinct modulo a prime ideal %J Algebraic Combinatorics %D 2023 %P 539-545 %V 6 %N 2 %I The Combinatorics Consortium %U http://geodesic.mathdoc.fr/articles/10.5802/alco.272/ %R 10.5802/alco.272 %G en %F ALCO_2023__6_2_539_0
Nozaki, Hiroshi. Bounds for sets with few distances distinct modulo a prime ideal. Algebraic Combinatorics, Tome 6 (2023) no. 2, pp. 539-545. doi: 10.5802/alco.272
Cité par Sources :