A tensor-cube version of the Saxl conjecture
Algebraic Combinatorics, Tome 6 (2023) no. 2, pp. 507-511

Voir la notice de l'article provenant de la source Numdam

Let n be a positive integer, and let ρ n =(n,n-1,n-2,...,1) be the “staircase” partition of size N=n+1 2. The Saxl conjecture asserts that every irreducible representation S λ of the symmetric group S N appears as a subrepresentation of the tensor square S ρ n S ρ n . In this short note we give two proofs that every irreducible representation of S N appears in the tensor cube S ρ n S ρ n S ρ n .

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/alco.267
Classification : 20C30
Keywords: Saxl conjecture, symmetric groups

Harman, Nate 1 ; Ryba, Christopher 2

1 Department of Mathematics University of Michigan Ann Arbor MI 48101 (USA)
2 Department of Mathematics University of California, Berkeley Berkeley CA 94720 (USA)
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{ALCO_2023__6_2_507_0,
     author = {Harman, Nate and Ryba, Christopher},
     title = {A tensor-cube version of the {Saxl} conjecture},
     journal = {Algebraic Combinatorics},
     pages = {507--511},
     publisher = {The Combinatorics Consortium},
     volume = {6},
     number = {2},
     year = {2023},
     doi = {10.5802/alco.267},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5802/alco.267/}
}
TY  - JOUR
AU  - Harman, Nate
AU  - Ryba, Christopher
TI  - A tensor-cube version of the Saxl conjecture
JO  - Algebraic Combinatorics
PY  - 2023
SP  - 507
EP  - 511
VL  - 6
IS  - 2
PB  - The Combinatorics Consortium
UR  - http://geodesic.mathdoc.fr/articles/10.5802/alco.267/
DO  - 10.5802/alco.267
LA  - en
ID  - ALCO_2023__6_2_507_0
ER  - 
%0 Journal Article
%A Harman, Nate
%A Ryba, Christopher
%T A tensor-cube version of the Saxl conjecture
%J Algebraic Combinatorics
%D 2023
%P 507-511
%V 6
%N 2
%I The Combinatorics Consortium
%U http://geodesic.mathdoc.fr/articles/10.5802/alco.267/
%R 10.5802/alco.267
%G en
%F ALCO_2023__6_2_507_0
Harman, Nate; Ryba, Christopher. A tensor-cube version of the Saxl conjecture. Algebraic Combinatorics, Tome 6 (2023) no. 2, pp. 507-511. doi: 10.5802/alco.267

Cité par Sources :