Voir la notice de l'article provenant de la source Numdam
Let be a positive integer, and let be the “staircase” partition of size . The Saxl conjecture asserts that every irreducible representation of the symmetric group appears as a subrepresentation of the tensor square . In this short note we give two proofs that every irreducible representation of appears in the tensor cube .
Harman, Nate 1 ; Ryba, Christopher 2
@article{ALCO_2023__6_2_507_0, author = {Harman, Nate and Ryba, Christopher}, title = {A tensor-cube version of the {Saxl} conjecture}, journal = {Algebraic Combinatorics}, pages = {507--511}, publisher = {The Combinatorics Consortium}, volume = {6}, number = {2}, year = {2023}, doi = {10.5802/alco.267}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.5802/alco.267/} }
TY - JOUR AU - Harman, Nate AU - Ryba, Christopher TI - A tensor-cube version of the Saxl conjecture JO - Algebraic Combinatorics PY - 2023 SP - 507 EP - 511 VL - 6 IS - 2 PB - The Combinatorics Consortium UR - http://geodesic.mathdoc.fr/articles/10.5802/alco.267/ DO - 10.5802/alco.267 LA - en ID - ALCO_2023__6_2_507_0 ER -
Harman, Nate; Ryba, Christopher. A tensor-cube version of the Saxl conjecture. Algebraic Combinatorics, Tome 6 (2023) no. 2, pp. 507-511. doi: 10.5802/alco.267
Cité par Sources :