Interval groups related to finite Coxeter groups I
Algebraic Combinatorics, Tome 6 (2023) no. 2, pp. 471-506

Voir la notice de l'article provenant de la source Numdam

We derive presentations of the interval groups related to all quasi-Coxeter elements in the Coxeter group of type D n . Type D n is the only infinite family of finite Coxeter groups that admits proper quasi-Coxeter elements. The presentations we obtain are over a set of generators in bijection with what we call a Carter generating set, and the relations are those defined by the related Carter diagram together with a twisted cycle or a cycle commutator relator, depending on whether the quasi-Coxeter element is a Coxeter element or not. The proof is based on the description of two combinatorial techniques related to the intervals of quasi-Coxeter elements.

In a subsequent work [4], we complete our analysis to cover all the exceptional cases of finite Coxeter groups, and establish that almost all the interval groups related to proper quasi-Coxeter elements are not isomorphic to the related Artin groups, hence establishing a new family of interval groups with nice presentations [4, 5]. Alongside the proof of the main results, we establish important properties related to the dual approach to Coxeter and Artin groups.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/alco.266
Classification : 20F55, 20F36
Keywords: Coxeter groups, Quasi-Coxeter elements, Carter diagrams, Artin(–Tits) groups, dual approach to Coxeter and Artin groups, generalised non-crossing partitions, Garside structures, Interval (Garside) structures.

Baumeister, Barbara 1 ; Neaime, Georges 2 ; Rees, Sarah 3

1 Fakultät für Mathematik Universität Bielefeld Postfach 10 01 31 33501 Bielefeld Germany
2 Fakultät für Mathematik Universität Bielefeld Postfach 10 01 31 33615 Bielefeld Germany
3 School of Mathematics, Statistics and Physics University of Newcastle Newcastle NE1 7RU UK
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{ALCO_2023__6_2_471_0,
     author = {Baumeister, Barbara and Neaime, Georges and Rees, Sarah},
     title = {Interval groups related to  finite {Coxeter} groups {I}},
     journal = {Algebraic Combinatorics},
     pages = {471--506},
     publisher = {The Combinatorics Consortium},
     volume = {6},
     number = {2},
     year = {2023},
     doi = {10.5802/alco.266},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5802/alco.266/}
}
TY  - JOUR
AU  - Baumeister, Barbara
AU  - Neaime, Georges
AU  - Rees, Sarah
TI  - Interval groups related to  finite Coxeter groups I
JO  - Algebraic Combinatorics
PY  - 2023
SP  - 471
EP  - 506
VL  - 6
IS  - 2
PB  - The Combinatorics Consortium
UR  - http://geodesic.mathdoc.fr/articles/10.5802/alco.266/
DO  - 10.5802/alco.266
LA  - en
ID  - ALCO_2023__6_2_471_0
ER  - 
%0 Journal Article
%A Baumeister, Barbara
%A Neaime, Georges
%A Rees, Sarah
%T Interval groups related to  finite Coxeter groups I
%J Algebraic Combinatorics
%D 2023
%P 471-506
%V 6
%N 2
%I The Combinatorics Consortium
%U http://geodesic.mathdoc.fr/articles/10.5802/alco.266/
%R 10.5802/alco.266
%G en
%F ALCO_2023__6_2_471_0
Baumeister, Barbara; Neaime, Georges; Rees, Sarah. Interval groups related to  finite Coxeter groups I. Algebraic Combinatorics, Tome 6 (2023) no. 2, pp. 471-506. doi: 10.5802/alco.266

Cité par Sources :