Voir la notice de l'article provenant de la source Numdam
Let . In their 1975 paper, Carlitz, Scoville and Vaughan provided a combinatorial interpretation of the coefficients in the power series . They proved that counts the number of pairs of permutations of the th symmetric group with no common ascent. This paper gives a combinatorial interpretation of a natural -analogue of by studying the top homology of the Segre product of the subspace lattice with itself. We also derive an equation that is analogous to a well-known symmetric function identity: , which then generalizes our -analogue to a symmetric group representation result.
Li, Yifei 1
@article{ALCO_2023__6_2_457_0, author = {Li, Yifei}, title = {A $q$-analogue of a result of {Carlitz,} {Scoville} and {Vaughan} via the homology of posets}, journal = {Algebraic Combinatorics}, pages = {457--469}, publisher = {The Combinatorics Consortium}, volume = {6}, number = {2}, year = {2023}, doi = {10.5802/alco.265}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.5802/alco.265/} }
TY - JOUR AU - Li, Yifei TI - A $q$-analogue of a result of Carlitz, Scoville and Vaughan via the homology of posets JO - Algebraic Combinatorics PY - 2023 SP - 457 EP - 469 VL - 6 IS - 2 PB - The Combinatorics Consortium UR - http://geodesic.mathdoc.fr/articles/10.5802/alco.265/ DO - 10.5802/alco.265 LA - en ID - ALCO_2023__6_2_457_0 ER -
%0 Journal Article %A Li, Yifei %T A $q$-analogue of a result of Carlitz, Scoville and Vaughan via the homology of posets %J Algebraic Combinatorics %D 2023 %P 457-469 %V 6 %N 2 %I The Combinatorics Consortium %U http://geodesic.mathdoc.fr/articles/10.5802/alco.265/ %R 10.5802/alco.265 %G en %F ALCO_2023__6_2_457_0
Li, Yifei. A $q$-analogue of a result of Carlitz, Scoville and Vaughan via the homology of posets. Algebraic Combinatorics, Tome 6 (2023) no. 2, pp. 457-469. doi: 10.5802/alco.265
Cité par Sources :