A q-analogue of a result of Carlitz, Scoville and Vaughan via the homology of posets
Algebraic Combinatorics, Tome 6 (2023) no. 2, pp. 457-469

Voir la notice de l'article provenant de la source Numdam

Let f(z)= n=0 (-1) n z n /n!n!. In their 1975 paper, Carlitz, Scoville and Vaughan provided a combinatorial interpretation of the coefficients in the power series 1/f(z)= n=0 ω n z n /n!n!. They proved that ω n counts the number of pairs of permutations of the nth symmetric group 𝒮 n with no common ascent. This paper gives a combinatorial interpretation of a natural q-analogue of ω n by studying the top homology of the Segre product of the subspace lattice B n (q) with itself. We also derive an equation that is analogous to a well-known symmetric function identity: i=0 n (-1) i e i h n-i =0, which then generalizes our q-analogue to a symmetric group representation result.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/alco.265
Classification : 05E05, 05E10, 05E18, 05E99, 20C30
Keywords: algebraic combinatorics, poset homology, shellability, symmetric functions, symmetric group representation

Li, Yifei 1

1 University of Illinois at Springfield Department of Mathematical Sciences and Philosophy One University Plaza MS WUIS 13 Springfield Illinois 62703 (USA)
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{ALCO_2023__6_2_457_0,
     author = {Li, Yifei},
     title = {A $q$-analogue of a result of {Carlitz,} {Scoville} and {Vaughan} via the homology of posets},
     journal = {Algebraic Combinatorics},
     pages = {457--469},
     publisher = {The Combinatorics Consortium},
     volume = {6},
     number = {2},
     year = {2023},
     doi = {10.5802/alco.265},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5802/alco.265/}
}
TY  - JOUR
AU  - Li, Yifei
TI  - A $q$-analogue of a result of Carlitz, Scoville and Vaughan via the homology of posets
JO  - Algebraic Combinatorics
PY  - 2023
SP  - 457
EP  - 469
VL  - 6
IS  - 2
PB  - The Combinatorics Consortium
UR  - http://geodesic.mathdoc.fr/articles/10.5802/alco.265/
DO  - 10.5802/alco.265
LA  - en
ID  - ALCO_2023__6_2_457_0
ER  - 
%0 Journal Article
%A Li, Yifei
%T A $q$-analogue of a result of Carlitz, Scoville and Vaughan via the homology of posets
%J Algebraic Combinatorics
%D 2023
%P 457-469
%V 6
%N 2
%I The Combinatorics Consortium
%U http://geodesic.mathdoc.fr/articles/10.5802/alco.265/
%R 10.5802/alco.265
%G en
%F ALCO_2023__6_2_457_0
Li, Yifei. A $q$-analogue of a result of Carlitz, Scoville and Vaughan via the homology of posets. Algebraic Combinatorics, Tome 6 (2023) no. 2, pp. 457-469. doi: 10.5802/alco.265

Cité par Sources :