Stable centres of wreath products
Algebraic Combinatorics, Tome 6 (2023) no. 2, pp. 413-455

Voir la notice de l'article provenant de la source Numdam

A result of Farahat and Higman shows that there is a “universal” algebra, FH, interpolating the centres of symmetric group algebras, Z(S n ). We explain that this algebra is isomorphic to Λ, where is the ring of integer-valued polynomials and Λ is the ring of symmetric functions. Moreover, the isomorphism is via “evaluation at Jucys–Murphy elements”, which leads to character formulae for symmetric groups. Then, we generalise this result to wreath products ΓS n of a fixed finite group Γ. This involves constructing wreath-product versions Γ and Λ(Γ * ) of and Λ, respectively, which are interesting in their own right (for example, both are Hopf algebras). We show that the universal algebra for wreath products, FH Γ , is isomorphic to Γ Λ(Γ * ) and use this to compute the p-blocks of wreath products.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/alco.264
Classification : 20C30, 20E22, 16U70
Keywords: wreath products, Farahat–Higman algebra, Jucys–Murphy elements

Ryba, Christopher 1

1 Department of Mathematics, University of California, Berkeley, CA 94720, USA
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{ALCO_2023__6_2_413_0,
     author = {Ryba, Christopher},
     title = {Stable centres of wreath products},
     journal = {Algebraic Combinatorics},
     pages = {413--455},
     publisher = {The Combinatorics Consortium},
     volume = {6},
     number = {2},
     year = {2023},
     doi = {10.5802/alco.264},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5802/alco.264/}
}
TY  - JOUR
AU  - Ryba, Christopher
TI  - Stable centres of wreath products
JO  - Algebraic Combinatorics
PY  - 2023
SP  - 413
EP  - 455
VL  - 6
IS  - 2
PB  - The Combinatorics Consortium
UR  - http://geodesic.mathdoc.fr/articles/10.5802/alco.264/
DO  - 10.5802/alco.264
LA  - en
ID  - ALCO_2023__6_2_413_0
ER  - 
%0 Journal Article
%A Ryba, Christopher
%T Stable centres of wreath products
%J Algebraic Combinatorics
%D 2023
%P 413-455
%V 6
%N 2
%I The Combinatorics Consortium
%U http://geodesic.mathdoc.fr/articles/10.5802/alco.264/
%R 10.5802/alco.264
%G en
%F ALCO_2023__6_2_413_0
Ryba, Christopher. Stable centres of wreath products. Algebraic Combinatorics, Tome 6 (2023) no. 2, pp. 413-455. doi: 10.5802/alco.264

Cité par Sources :