Lagrangian combinatorics of matroids
Algebraic Combinatorics, Tome 6 (2023) no. 2, pp. 387-411

Voir la notice de l'article provenant de la source Numdam

The Lagrangian geometry of matroids was introduced in [2] through the construction of the conormal fan of a matroid M. We used the conormal fan to give a Lagrangian-geometric interpretation of the h-vector of the broken circuit complex of M: its entries are the degrees of the mixed intersections of certain convex piecewise linear functions γ and δ on the conormal fan of M. By showing that the conormal fan satisfies the Hodge-Riemann relations, we proved Brylawski’s conjecture that this h-vector is a log-concave sequence.

This sequel explores the Lagrangian combinatorics of matroids, further developing the combinatorics of biflats and biflags of a matroid, and relating them to the theory of basis activities developed by Tutte, Crapo, and Las Vergnas. Our main result is a combinatorial realization of the intersection-theoretic computation above: we write the k-th mixed intersection of γ and δ explicitly as a sum of biflags corresponding to the nbc bases of internal activity k+1.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/alco.263
Classification : 05B35, 05E45, 14T15, 52B40
Keywords: basis activity, conormal fan, $h$-vector, matroid

Ardila, Federico 1 ; Denham, Graham 2 ; Huh, June 3

1 San Francisco State University Dept. of Mathematics 1600 Holloway Ave. San Francisco, CA 94110 USA Universidad de Los Andes Depto. de Matemáticas Cra. 1 #18a-12 Bogotá Colombia
2 University of Western Ontario Dept. of Mathematics Middlesex College London, Ontario Canada N6A 5B7
3 Princeton University Dept. of Mathematics Fine Hall 304 Washington Rd. Princeton, NJ 08544 USA
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{ALCO_2023__6_2_387_0,
     author = {Ardila, Federico and Denham, Graham and Huh, June},
     title = {Lagrangian combinatorics of matroids},
     journal = {Algebraic Combinatorics},
     pages = {387--411},
     publisher = {The Combinatorics Consortium},
     volume = {6},
     number = {2},
     year = {2023},
     doi = {10.5802/alco.263},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5802/alco.263/}
}
TY  - JOUR
AU  - Ardila, Federico
AU  - Denham, Graham
AU  - Huh, June
TI  - Lagrangian combinatorics of matroids
JO  - Algebraic Combinatorics
PY  - 2023
SP  - 387
EP  - 411
VL  - 6
IS  - 2
PB  - The Combinatorics Consortium
UR  - http://geodesic.mathdoc.fr/articles/10.5802/alco.263/
DO  - 10.5802/alco.263
LA  - en
ID  - ALCO_2023__6_2_387_0
ER  - 
%0 Journal Article
%A Ardila, Federico
%A Denham, Graham
%A Huh, June
%T Lagrangian combinatorics of matroids
%J Algebraic Combinatorics
%D 2023
%P 387-411
%V 6
%N 2
%I The Combinatorics Consortium
%U http://geodesic.mathdoc.fr/articles/10.5802/alco.263/
%R 10.5802/alco.263
%G en
%F ALCO_2023__6_2_387_0
Ardila, Federico; Denham, Graham; Huh, June. Lagrangian combinatorics of matroids. Algebraic Combinatorics, Tome 6 (2023) no. 2, pp. 387-411. doi: 10.5802/alco.263

Cité par Sources :