Voir la notice de l'article provenant de la source Numdam
We describe an approach, via Malle’s permutation on the set of irreducible characters of a reflection group , that gives a uniform derivation of the Chapuy–Stump formula for the enumeration of reflection factorizations of a Coxeter element . It also recovers its weighted generalization by delMas, Reiner, and Hameister, and further produces structural results for factorization formulas of arbitrary regular elements.
Douvropoulos, Theo 1
@article{ALCO_2023__6_2_359_0, author = {Douvropoulos, Theo}, title = {On enumerating factorizations in reflection groups}, journal = {Algebraic Combinatorics}, pages = {359--385}, publisher = {The Combinatorics Consortium}, volume = {6}, number = {2}, year = {2023}, doi = {10.5802/alco.261}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.5802/alco.261/} }
TY - JOUR AU - Douvropoulos, Theo TI - On enumerating factorizations in reflection groups JO - Algebraic Combinatorics PY - 2023 SP - 359 EP - 385 VL - 6 IS - 2 PB - The Combinatorics Consortium UR - http://geodesic.mathdoc.fr/articles/10.5802/alco.261/ DO - 10.5802/alco.261 LA - en ID - ALCO_2023__6_2_359_0 ER -
Douvropoulos, Theo. On enumerating factorizations in reflection groups. Algebraic Combinatorics, Tome 6 (2023) no. 2, pp. 359-385. doi: 10.5802/alco.261
Cité par Sources :