k-positivity of dual canonical basis elements from 1324- and 2143-avoiding Kazhdan–Lusztig immanants
Algebraic Combinatorics, Tome 6 (2023) no. 1, pp. 95-108

Voir la notice de l'article provenant de la source Numdam

In this note, we show that certain dual canonical basis elements of [SL m ] are positive when evaluated on k-positive matrices, matrices whose minors of size k×k and smaller are positive. Skandera showed that all dual canonical basis elements of [SL m ] can be written in terms of Kazhdan–Lusztig immanants, which were introduced by Rhoades and Skandera. We focus on the basis elements which are expressed in terms of Kazhdan–Lusztig immanants indexed by 1324- and 2143-avoiding permutations. This extends previous work of the authors on Kazhdan–Lusztig immanants and uses similar tools, namely Lewis Carroll’s identity (also known as the Desnanot-Jacobi identity).

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/alco.257
Classification : 15A15, 05E10, 20C30
Keywords: immanants, total positivity, dual canonical basis

Chepuri, Sunita 1 ; Sherman-Bennett, Melissa 2

1 Lafayette College Pardee Hall Easton PA 18042 (USA)
2 University of Michigan 2074 East Hall Ann Arbor MI 48109 (USA)
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{ALCO_2023__6_1_95_0,
     author = {Chepuri, Sunita and Sherman-Bennett, Melissa},
     title = {$k$-positivity of dual canonical basis elements from 1324- and 2143-avoiding {Kazhdan{\textendash}Lusztig} immanants},
     journal = {Algebraic Combinatorics},
     pages = {95--108},
     publisher = {The Combinatorics Consortium},
     volume = {6},
     number = {1},
     year = {2023},
     doi = {10.5802/alco.257},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5802/alco.257/}
}
TY  - JOUR
AU  - Chepuri, Sunita
AU  - Sherman-Bennett, Melissa
TI  - $k$-positivity of dual canonical basis elements from 1324- and 2143-avoiding Kazhdan–Lusztig immanants
JO  - Algebraic Combinatorics
PY  - 2023
SP  - 95
EP  - 108
VL  - 6
IS  - 1
PB  - The Combinatorics Consortium
UR  - http://geodesic.mathdoc.fr/articles/10.5802/alco.257/
DO  - 10.5802/alco.257
LA  - en
ID  - ALCO_2023__6_1_95_0
ER  - 
%0 Journal Article
%A Chepuri, Sunita
%A Sherman-Bennett, Melissa
%T $k$-positivity of dual canonical basis elements from 1324- and 2143-avoiding Kazhdan–Lusztig immanants
%J Algebraic Combinatorics
%D 2023
%P 95-108
%V 6
%N 1
%I The Combinatorics Consortium
%U http://geodesic.mathdoc.fr/articles/10.5802/alco.257/
%R 10.5802/alco.257
%G en
%F ALCO_2023__6_1_95_0
Chepuri, Sunita; Sherman-Bennett, Melissa. $k$-positivity of dual canonical basis elements from 1324- and 2143-avoiding Kazhdan–Lusztig immanants. Algebraic Combinatorics, Tome 6 (2023) no. 1, pp. 95-108. doi: 10.5802/alco.257

Cité par Sources :