Voir la notice de l'article provenant de la source Numdam
In this note, we show that certain dual canonical basis elements of are positive when evaluated on -positive matrices, matrices whose minors of size and smaller are positive. Skandera showed that all dual canonical basis elements of can be written in terms of Kazhdan–Lusztig immanants, which were introduced by Rhoades and Skandera. We focus on the basis elements which are expressed in terms of Kazhdan–Lusztig immanants indexed by 1324- and 2143-avoiding permutations. This extends previous work of the authors on Kazhdan–Lusztig immanants and uses similar tools, namely Lewis Carroll’s identity (also known as the Desnanot-Jacobi identity).
Chepuri, Sunita 1 ; Sherman-Bennett, Melissa 2
@article{ALCO_2023__6_1_95_0, author = {Chepuri, Sunita and Sherman-Bennett, Melissa}, title = {$k$-positivity of dual canonical basis elements from 1324- and 2143-avoiding {Kazhdan{\textendash}Lusztig} immanants}, journal = {Algebraic Combinatorics}, pages = {95--108}, publisher = {The Combinatorics Consortium}, volume = {6}, number = {1}, year = {2023}, doi = {10.5802/alco.257}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.5802/alco.257/} }
TY - JOUR AU - Chepuri, Sunita AU - Sherman-Bennett, Melissa TI - $k$-positivity of dual canonical basis elements from 1324- and 2143-avoiding Kazhdan–Lusztig immanants JO - Algebraic Combinatorics PY - 2023 SP - 95 EP - 108 VL - 6 IS - 1 PB - The Combinatorics Consortium UR - http://geodesic.mathdoc.fr/articles/10.5802/alco.257/ DO - 10.5802/alco.257 LA - en ID - ALCO_2023__6_1_95_0 ER -
%0 Journal Article %A Chepuri, Sunita %A Sherman-Bennett, Melissa %T $k$-positivity of dual canonical basis elements from 1324- and 2143-avoiding Kazhdan–Lusztig immanants %J Algebraic Combinatorics %D 2023 %P 95-108 %V 6 %N 1 %I The Combinatorics Consortium %U http://geodesic.mathdoc.fr/articles/10.5802/alco.257/ %R 10.5802/alco.257 %G en %F ALCO_2023__6_1_95_0
Chepuri, Sunita; Sherman-Bennett, Melissa. $k$-positivity of dual canonical basis elements from 1324- and 2143-avoiding Kazhdan–Lusztig immanants. Algebraic Combinatorics, Tome 6 (2023) no. 1, pp. 95-108. doi: 10.5802/alco.257
Cité par Sources :