Voir la notice de l'article provenant de la source Numdam
A fence is a poset with elements and covers
where are positive integers. We investigate rowmotion on antichains and ideals of . In particular, we show that orbits of antichains can be visualized using tilings. This permits us to prove various homomesy results for the number of elements of an antichain or ideal in an orbit. Rowmotion on fences also exhibits a new phenomenon, which we call homometry, where the value of a statistic is constant on orbits of the same size. Along the way, we prove a general homomesy result for all self-dual posets. We end with some conjectures and avenues for future research.
Elizalde, Sergi 1 ; Plante, Matthew 2 ; Roby, Tom 2 ; Sagan, Bruce E. 3
@article{ALCO_2023__6_1_17_0, author = {Elizalde, Sergi and Plante, Matthew and Roby, Tom and Sagan, Bruce E.}, title = {Rowmotion on fences}, journal = {Algebraic Combinatorics}, pages = {17--36}, publisher = {The Combinatorics Consortium}, volume = {6}, number = {1}, year = {2023}, doi = {10.5802/alco.256}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.5802/alco.256/} }
TY - JOUR AU - Elizalde, Sergi AU - Plante, Matthew AU - Roby, Tom AU - Sagan, Bruce E. TI - Rowmotion on fences JO - Algebraic Combinatorics PY - 2023 SP - 17 EP - 36 VL - 6 IS - 1 PB - The Combinatorics Consortium UR - http://geodesic.mathdoc.fr/articles/10.5802/alco.256/ DO - 10.5802/alco.256 LA - en ID - ALCO_2023__6_1_17_0 ER -
%0 Journal Article %A Elizalde, Sergi %A Plante, Matthew %A Roby, Tom %A Sagan, Bruce E. %T Rowmotion on fences %J Algebraic Combinatorics %D 2023 %P 17-36 %V 6 %N 1 %I The Combinatorics Consortium %U http://geodesic.mathdoc.fr/articles/10.5802/alco.256/ %R 10.5802/alco.256 %G en %F ALCO_2023__6_1_17_0
Elizalde, Sergi; Plante, Matthew; Roby, Tom; Sagan, Bruce E. Rowmotion on fences. Algebraic Combinatorics, Tome 6 (2023) no. 1, pp. 17-36. doi: 10.5802/alco.256
Cité par Sources :