Voir la notice de l'article provenant de la source Numdam
Fully inhomogeneous spin Hall–Littlewood symmetric rational functions are multiparameter deformations of the classical Hall–Littlewood symmetric polynomials and can be viewed as partition functions in higher spin six vertex models.
We obtain a refined Littlewood identity expressing a weighted sum of ’s over all signatures with even multiplicities as a certain Pfaffian. This Pfaffian can be derived as a partition function of the six vertex model in a triangle with suitably decorated domain wall boundary conditions. The proof is based on the Yang–Baxter equation.
Gavrilova, Svetlana 1
@article{ALCO_2023__6_1_37_0, author = {Gavrilova, Svetlana}, title = {Refined {Littlewood} identity for spin {Hall{\textendash}Littlewood} symmetric rational functions}, journal = {Algebraic Combinatorics}, pages = {37--51}, publisher = {The Combinatorics Consortium}, volume = {6}, number = {1}, year = {2023}, doi = {10.5802/alco.251}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.5802/alco.251/} }
TY - JOUR AU - Gavrilova, Svetlana TI - Refined Littlewood identity for spin Hall–Littlewood symmetric rational functions JO - Algebraic Combinatorics PY - 2023 SP - 37 EP - 51 VL - 6 IS - 1 PB - The Combinatorics Consortium UR - http://geodesic.mathdoc.fr/articles/10.5802/alco.251/ DO - 10.5802/alco.251 LA - en ID - ALCO_2023__6_1_37_0 ER -
%0 Journal Article %A Gavrilova, Svetlana %T Refined Littlewood identity for spin Hall–Littlewood symmetric rational functions %J Algebraic Combinatorics %D 2023 %P 37-51 %V 6 %N 1 %I The Combinatorics Consortium %U http://geodesic.mathdoc.fr/articles/10.5802/alco.251/ %R 10.5802/alco.251 %G en %F ALCO_2023__6_1_37_0
Gavrilova, Svetlana. Refined Littlewood identity for spin Hall–Littlewood symmetric rational functions. Algebraic Combinatorics, Tome 6 (2023) no. 1, pp. 37-51. doi: 10.5802/alco.251
Cité par Sources :