Voir la notice de l'article provenant de la source Numdam
It has been established in recent years how to approach acyclic cluster algebras of finite type using subword complexes. We continue this study by uniformly describing the - and -vectors, and by providing a conjectured description of the Newton polytopes of the -polynomials. We moreover show that this conjectured description would imply that finite type cluster complexes are realized by the duals of the Minkowski sums of the Newton polytopes of either the -polynomials or of the cluster variables, respectively. We prove this conjectured description to hold in type and in all types of rank at most including all exceptional types, leaving types , , and conjectural.
Brodsky, Sarah B. 1 ; Stump, Christian 1
@article{ALCO_2018__1_4_545_0, author = {Brodsky, Sarah B. and Stump, Christian}, title = {Towards a uniform subword complex description of acyclic finite type cluster algebras}, journal = {Algebraic Combinatorics}, pages = {545--572}, publisher = {MathOA foundation}, volume = {1}, number = {4}, year = {2018}, doi = {10.5802/alco.25}, mrnumber = {3875076}, zbl = {06963904}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.5802/alco.25/} }
TY - JOUR AU - Brodsky, Sarah B. AU - Stump, Christian TI - Towards a uniform subword complex description of acyclic finite type cluster algebras JO - Algebraic Combinatorics PY - 2018 SP - 545 EP - 572 VL - 1 IS - 4 PB - MathOA foundation UR - http://geodesic.mathdoc.fr/articles/10.5802/alco.25/ DO - 10.5802/alco.25 LA - en ID - ALCO_2018__1_4_545_0 ER -
%0 Journal Article %A Brodsky, Sarah B. %A Stump, Christian %T Towards a uniform subword complex description of acyclic finite type cluster algebras %J Algebraic Combinatorics %D 2018 %P 545-572 %V 1 %N 4 %I MathOA foundation %U http://geodesic.mathdoc.fr/articles/10.5802/alco.25/ %R 10.5802/alco.25 %G en %F ALCO_2018__1_4_545_0
Brodsky, Sarah B.; Stump, Christian. Towards a uniform subword complex description of acyclic finite type cluster algebras. Algebraic Combinatorics, Tome 1 (2018) no. 4, pp. 545-572. doi : 10.5802/alco.25. http://geodesic.mathdoc.fr/articles/10.5802/alco.25/
[1] Coxeter matroids, Progress in Mathematics, 216, Birkhäuser, 2003 | MR | Zbl
[2] Cluster algebras of type , tropical planes, and the positive tropical Grassmannian, Beitr. Algebra Geom., Volume 58 (2017) no. 1, pp. 25-46 | DOI | MR | Zbl
[3] Subword complexes, cluster complexes, and generalized multi-associahedra, J. Algebr. Comb., Volume 39 (2014) no. 1, pp. 17-51 | MR | DOI | Zbl
[4] Denominator vectors and compatibility degrees in cluster algebras of finite type, Trans. Am. Math. Soc., Volume 367 (2015) no. 2, pp. 1421-1439 | DOI | MR | Zbl
[5] Polytopal realizations of generalized associahedra, Can. Math. Bull., Volume 45 (2002) no. 4, pp. 537-566 | DOI | MR | Zbl
[6] Cluster algebras I: foundations, J. Am. Math. Soc., Volume 15 (2002) no. 2, pp. 497-529 | DOI | MR | Zbl
[7] Cluster algebras II: finite type classification, Invent. Math., Volume 154 (2003) no. 1, pp. 63-121 | MR | DOI | Zbl
[8] Cluster algebras IV: coefficients, Compos. Math., Volume 143 (2007) no. 1, pp. 112-164 | MR | DOI | Zbl
[9] Permutahedra and generalized associahedra, Adv. Math., Volume 226 (2011) no. 1, pp. 608-640 | MR | DOI | Zbl
[10] Reflection groups and Coxeter groups, 29, Cambridge University Press, 1990, xii+204 pages | MR | Zbl
[11] Subword complexes in Coxeter groups, Adv. Math., Volume 184 (2004) no. 1, pp. 161-176 | MR | DOI | Zbl
[12] Gröbner geometry of Schubert polynomials, Ann. Math., Volume 161 (2005) no. 3, pp. 1245-1318 | DOI | Zbl
[13] Minkowski decomposition of associahedra and related combinatorics, Discrete Comput. Geom., Volume 50 (2013) no. 4, pp. 903-939 | DOI | MR | Zbl
[14] Associahedra via spines, Combinatorica, Volume 38 (2018) no. 2, pp. 443-486 | Zbl | MR | DOI
[15] Realization of the Stasheff polytope, Arch. Math., Volume 83 (2004) no. 3, pp. 267-278 | MR | Zbl
[16] Cluster expansion formulas and perfect matchings, J. Algebr. Comb., Volume 32 (2010) no. 2, pp. 187-209 | DOI | MR | Zbl
[17] Positivity for cluster algebras from surfaces, Adv. Math., Volume 227 (2011) no. 6, pp. 2241-2308 | MR | DOI | Zbl
[18] On tropical dualities in cluster algebras, Algebraic groups and quantum groups (Nagoya, 2010) (Contemporary Mathematics), Volume 565, American Mathematical Society, 2012, pp. 217-226 | DOI | MR | Zbl
[19] Brick polytopes of spherical subword complexes and generalized associahedra, Adv. Math., Volume 276 (2015), pp. 1-61 | DOI | MR | Zbl
[20] Vertex barycenter of generalized associahedra, Proc. Am. Math. Soc., Volume 153 (2015) no. 6, pp. 2623-2636 | MR | DOI | Zbl
[21] Permutahedra, associahedra, and beyond, Int. Math. Res. Not., Volume 2009 (2009) no. 6, pp. 1026-1106 | DOI | Zbl
[22] Sortable elements and Cambrian lattices, Algebra Univers., Volume 56 (2007) no. 3-4, pp. 411-437 | DOI | MR | Zbl
[23] Combinatorial frameworks for cluster algebras, Int. Math. Res. Not., Volume 2016 (2016) no. 1, pp. 109-173 | DOI | MR | Zbl
[24] Cambrian frameworks for cluster algebras of affine type, Trans. Am. Math. Soc., Volume 370 (2018) no. 2, pp. 1429-1468 | DOI | MR | Zbl
[25] A cluster expansion formula ( case), Electron. J. Comb., Volume 15 (2008), R64, 9 pages | MR | Zbl
[26] The tropical totally positive Grassmannian, J. Algebr. Comb., Volume 22 (2005) no. 2, pp. 189-210 | DOI | MR | Zbl
[27] Quantum F-polynomials in the theory of cluster algebras, Ph. D. Thesis, Northeastern University (USA) (2010), 99 pages (https://search.proquest.com/docview/275987433) | MR
[28] Cluster algebras of finite type via Coxeter elements and principal minors, Transform. Groups, Volume 13 (2008) no. 3-4, pp. 855-895 | DOI | MR | Zbl
Cité par Sources :