Towards a uniform subword complex description of acyclic finite type cluster algebras
Algebraic Combinatorics, Tome 1 (2018) no. 4, pp. 545-572.

Voir la notice de l'article provenant de la source Numdam

It has been established in recent years how to approach acyclic cluster algebras of finite type using subword complexes. We continue this study by uniformly describing the c- and g-vectors, and by providing a conjectured description of the Newton polytopes of the F-polynomials. We moreover show that this conjectured description would imply that finite type cluster complexes are realized by the duals of the Minkowski sums of the Newton polytopes of either the F-polynomials or of the cluster variables, respectively. We prove this conjectured description to hold in type A and in all types of rank at most 8 including all exceptional types, leaving types B, C, and D conjectural.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/alco.25
Keywords: cluster algebra, $F$-polynomial, subword complexes

Brodsky, Sarah B. 1 ; Stump, Christian 1

1 Institut für Mathematik, Technische Universität Berlin, Germany
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{ALCO_2018__1_4_545_0,
     author = {Brodsky, Sarah B. and Stump, Christian},
     title = {Towards a uniform subword complex description of acyclic finite type cluster algebras},
     journal = {Algebraic Combinatorics},
     pages = {545--572},
     publisher = {MathOA foundation},
     volume = {1},
     number = {4},
     year = {2018},
     doi = {10.5802/alco.25},
     mrnumber = {3875076},
     zbl = {06963904},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5802/alco.25/}
}
TY  - JOUR
AU  - Brodsky, Sarah B.
AU  - Stump, Christian
TI  - Towards a uniform subword complex description of acyclic finite type cluster algebras
JO  - Algebraic Combinatorics
PY  - 2018
SP  - 545
EP  - 572
VL  - 1
IS  - 4
PB  - MathOA foundation
UR  - http://geodesic.mathdoc.fr/articles/10.5802/alco.25/
DO  - 10.5802/alco.25
LA  - en
ID  - ALCO_2018__1_4_545_0
ER  - 
%0 Journal Article
%A Brodsky, Sarah B.
%A Stump, Christian
%T Towards a uniform subword complex description of acyclic finite type cluster algebras
%J Algebraic Combinatorics
%D 2018
%P 545-572
%V 1
%N 4
%I MathOA foundation
%U http://geodesic.mathdoc.fr/articles/10.5802/alco.25/
%R 10.5802/alco.25
%G en
%F ALCO_2018__1_4_545_0
Brodsky, Sarah B.; Stump, Christian. Towards a uniform subword complex description of acyclic finite type cluster algebras. Algebraic Combinatorics, Tome 1 (2018) no. 4, pp. 545-572. doi : 10.5802/alco.25. http://geodesic.mathdoc.fr/articles/10.5802/alco.25/

[1] Borovik, Alexandre V.; Gelfand, Israil M.; White, Neil Coxeter matroids, Progress in Mathematics, 216, Birkhäuser, 2003 | MR | Zbl

[2] Brodsky, Sarah B.; Ceballos, Cesar; Labbé, Jean-Philippe Cluster algebras of type D 4 , tropical planes, and the positive tropical Grassmannian, Beitr. Algebra Geom., Volume 58 (2017) no. 1, pp. 25-46 | DOI | MR | Zbl

[3] Ceballos, Cesar; Labbé, Jean-Philippe; Stump, Christian Subword complexes, cluster complexes, and generalized multi-associahedra, J. Algebr. Comb., Volume 39 (2014) no. 1, pp. 17-51 | MR | DOI | Zbl

[4] Ceballos, Cesar; Pilaud, Vincent Denominator vectors and compatibility degrees in cluster algebras of finite type, Trans. Am. Math. Soc., Volume 367 (2015) no. 2, pp. 1421-1439 | DOI | MR | Zbl

[5] Chapoton, Frédéric; Fomin, Sergey; Zelevinsky, Andrei Polytopal realizations of generalized associahedra, Can. Math. Bull., Volume 45 (2002) no. 4, pp. 537-566 | DOI | MR | Zbl

[6] Fomin, Sergey; Zelevinsky, Andrei Cluster algebras I: foundations, J. Am. Math. Soc., Volume 15 (2002) no. 2, pp. 497-529 | DOI | MR | Zbl

[7] Fomin, Sergey; Zelevinsky, Andrei Cluster algebras II: finite type classification, Invent. Math., Volume 154 (2003) no. 1, pp. 63-121 | MR | DOI | Zbl

[8] Fomin, Sergey; Zelevinsky, Andrei Cluster algebras IV: coefficients, Compos. Math., Volume 143 (2007) no. 1, pp. 112-164 | MR | DOI | Zbl

[9] Hohlweg, Christophe; Lange, Carsten; Thomas, Hugh Permutahedra and generalized associahedra, Adv. Math., Volume 226 (2011) no. 1, pp. 608-640 | MR | DOI | Zbl

[10] Humphreys, James E. Reflection groups and Coxeter groups, 29, Cambridge University Press, 1990, xii+204 pages | MR | Zbl

[11] Knutson, Allen; Miller, Ezra Subword complexes in Coxeter groups, Adv. Math., Volume 184 (2004) no. 1, pp. 161-176 | MR | DOI | Zbl

[12] Knutson, Allen; Miller, Ezra Gröbner geometry of Schubert polynomials, Ann. Math., Volume 161 (2005) no. 3, pp. 1245-1318 | DOI | Zbl

[13] Lange, Carsten Minkowski decomposition of associahedra and related combinatorics, Discrete Comput. Geom., Volume 50 (2013) no. 4, pp. 903-939 | DOI | MR | Zbl

[14] Lange, Carsten; Pilaud, Vincent Associahedra via spines, Combinatorica, Volume 38 (2018) no. 2, pp. 443-486 | Zbl | MR | DOI

[15] Loday, Jean-Louis Realization of the Stasheff polytope, Arch. Math., Volume 83 (2004) no. 3, pp. 267-278 | MR | Zbl

[16] Musiker, Gregg; Schiffler, Ralf Cluster expansion formulas and perfect matchings, J. Algebr. Comb., Volume 32 (2010) no. 2, pp. 187-209 | DOI | MR | Zbl

[17] Musiker, Gregg; Schiffler, Ralf; Williams, Lauren Positivity for cluster algebras from surfaces, Adv. Math., Volume 227 (2011) no. 6, pp. 2241-2308 | MR | DOI | Zbl

[18] Nakanishi, Tomoki; Zelevinsky, Andrei On tropical dualities in cluster algebras, Algebraic groups and quantum groups (Nagoya, 2010) (Contemporary Mathematics), Volume 565, American Mathematical Society, 2012, pp. 217-226 | DOI | MR | Zbl

[19] Pilaud, Vincent; Stump, Christian Brick polytopes of spherical subword complexes and generalized associahedra, Adv. Math., Volume 276 (2015), pp. 1-61 | DOI | MR | Zbl

[20] Pilaud, Vincent; Stump, Christian Vertex barycenter of generalized associahedra, Proc. Am. Math. Soc., Volume 153 (2015) no. 6, pp. 2623-2636 | MR | DOI | Zbl

[21] Postnikov, Alexander Permutahedra, associahedra, and beyond, Int. Math. Res. Not., Volume 2009 (2009) no. 6, pp. 1026-1106 | DOI | Zbl

[22] Reading, Nathan Sortable elements and Cambrian lattices, Algebra Univers., Volume 56 (2007) no. 3-4, pp. 411-437 | DOI | MR | Zbl

[23] Reading, Nathan; Speyer, David Combinatorial frameworks for cluster algebras, Int. Math. Res. Not., Volume 2016 (2016) no. 1, pp. 109-173 | DOI | MR | Zbl

[24] Reading, Nathan; Speyer, David Cambrian frameworks for cluster algebras of affine type, Trans. Am. Math. Soc., Volume 370 (2018) no. 2, pp. 1429-1468 | DOI | MR | Zbl

[25] Schiffler, Ralf A cluster expansion formula (A n case), Electron. J. Comb., Volume 15 (2008), R64, 9 pages | MR | Zbl

[26] Speyer, David; Williams, Lauren The tropical totally positive Grassmannian, J. Algebr. Comb., Volume 22 (2005) no. 2, pp. 189-210 | DOI | MR | Zbl

[27] Tran, Thao Quantum F-polynomials in the theory of cluster algebras, Ph. D. Thesis, Northeastern University (USA) (2010), 99 pages (https://search.proquest.com/docview/275987433) | MR

[28] Yang, Shih-Wei; Zelevinsky, Andrei Cluster algebras of finite type via Coxeter elements and principal minors, Transform. Groups, Volume 13 (2008) no. 3-4, pp. 855-895 | DOI | MR | Zbl

Cité par Sources :