Voir la notice de l'article provenant de la source Numdam
Generalizing stack sorting and -sorting for permutations, we define the permutree sorting algorithm. Given two disjoint subsets and of , the -permutree sorting tries to sort the permutation and fails if and only if there are such that contains the subword if and if . This algorithm is seen as a way to explore an automaton which either rejects all reduced words of , or accepts those reduced words for whose prefixes are all -permutree sortable.
Pilaud, Vincent 1 ; Pons, Vivane 2 ; Tamayo Jimenez, Daniel 2
@article{ALCO_2023__6_1_53_0, author = {Pilaud, Vincent and Pons, Vivane and Tamayo Jimenez, Daniel}, title = {Permutree sorting}, journal = {Algebraic Combinatorics}, pages = {53--74}, publisher = {The Combinatorics Consortium}, volume = {6}, number = {1}, year = {2023}, doi = {10.5802/alco.249}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.5802/alco.249/} }
TY - JOUR AU - Pilaud, Vincent AU - Pons, Vivane AU - Tamayo Jimenez, Daniel TI - Permutree sorting JO - Algebraic Combinatorics PY - 2023 SP - 53 EP - 74 VL - 6 IS - 1 PB - The Combinatorics Consortium UR - http://geodesic.mathdoc.fr/articles/10.5802/alco.249/ DO - 10.5802/alco.249 LA - en ID - ALCO_2023__6_1_53_0 ER -
Pilaud, Vincent; Pons, Vivane; Tamayo Jimenez, Daniel. Permutree sorting. Algebraic Combinatorics, Tome 6 (2023) no. 1, pp. 53-74. doi: 10.5802/alco.249
Cité par Sources :