Modified Macdonald polynomials and the multispecies zero-range process: I
Algebraic Combinatorics, Tome 6 (2023) no. 1, pp. 243-284

Voir la notice de l'article provenant de la source Numdam

In this paper we prove a new combinatorial formula for the modified Macdonald polynomials H ˜ λ (X;q,t), motivated by connections to the theory of interacting particle systems from statistical mechanics. The formula involves a new statistic called queue inversions on fillings of tableaux. This statistic is closely related to the multiline queues which were recently used to give a formula for the Macdonald polynomials P λ (X;q,t). In the case q=1 and X=(1,1,,1), that formula had also been shown to compute stationary probabilities for a particle system known as the multispecies ASEP on a ring, and it is natural to ask whether a similar connection exists between the modified Macdonald polynomials and a suitable statistical mechanics model. In a sequel to this work, we demonstrate such a connection, showing that the stationary probabilities of the multispecies totally asymmetric zero-range process (mTAZRP) on a ring can be computed using tableaux formulas with the queue inversion statistic. This connection extends to arbitrary X=(x 1 ,,x n ); the x i play the role of site-dependent jump rates for the mTAZRP.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/alco.248
Classification : 05E05, 05A10, 05A19, 05A05, 33D52
Keywords: modified Macdonald polynomials, TAZRP, tableaux, zero range process

Ayyer, Arvind 1 ; Mandelshtam, Olya 2 ; Martin, James B 3

1 Department of Mathematics Indian Institute of Science Bangalore 560 012, India
2 Department of Combinatorics and Optimization University of Waterloo Waterloo, ON, Canada
3 Department of Statistics University of Oxford UK
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{ALCO_2023__6_1_243_0,
     author = {Ayyer, Arvind and Mandelshtam, Olya and Martin, James B},
     title = {Modified {Macdonald} polynomials and the multispecies zero-range process: {I}},
     journal = {Algebraic Combinatorics},
     pages = {243--284},
     publisher = {The Combinatorics Consortium},
     volume = {6},
     number = {1},
     year = {2023},
     doi = {10.5802/alco.248},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5802/alco.248/}
}
TY  - JOUR
AU  - Ayyer, Arvind
AU  - Mandelshtam, Olya
AU  - Martin, James B
TI  - Modified Macdonald polynomials and the multispecies zero-range process: I
JO  - Algebraic Combinatorics
PY  - 2023
SP  - 243
EP  - 284
VL  - 6
IS  - 1
PB  - The Combinatorics Consortium
UR  - http://geodesic.mathdoc.fr/articles/10.5802/alco.248/
DO  - 10.5802/alco.248
LA  - en
ID  - ALCO_2023__6_1_243_0
ER  - 
%0 Journal Article
%A Ayyer, Arvind
%A Mandelshtam, Olya
%A Martin, James B
%T Modified Macdonald polynomials and the multispecies zero-range process: I
%J Algebraic Combinatorics
%D 2023
%P 243-284
%V 6
%N 1
%I The Combinatorics Consortium
%U http://geodesic.mathdoc.fr/articles/10.5802/alco.248/
%R 10.5802/alco.248
%G en
%F ALCO_2023__6_1_243_0
Ayyer, Arvind; Mandelshtam, Olya; Martin, James B. Modified Macdonald polynomials and the multispecies zero-range process: I. Algebraic Combinatorics, Tome 6 (2023) no. 1, pp. 243-284. doi: 10.5802/alco.248

Cité par Sources :