Voir la notice de l'article provenant de la source Numdam
In this paper we show that if is a -design of an association scheme , and the Krein parameters vanish for some and all (), then consists of precisely half of the vertices of or it is a -design, where . We then apply this result to various problems in finite geometry. In particular, we show for the first time that nontrivial -ovoids of generalised octagons of order do not exist. We give short proofs of similar results for (i) partial geometries with certain order conditions; (ii) thick generalised quadrangles of order ; (iii) the dual polar spaces , and , for ; (iv) the Penttila–Williford scheme. In the process of (iv), we also consider a natural generalisation of the Penttila–Williford scheme in , .
Bamberg, John 1 ; Lansdown, Jesse 1
@article{ALCO_2023__6_1_197_0, author = {Bamberg, John and Lansdown, Jesse}, title = {Implications of vanishing {Krein} parameters on {Delsarte} designs, with applications in finite geometry}, journal = {Algebraic Combinatorics}, pages = {197--212}, publisher = {The Combinatorics Consortium}, volume = {6}, number = {1}, year = {2023}, doi = {10.5802/alco.246}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.5802/alco.246/} }
TY - JOUR AU - Bamberg, John AU - Lansdown, Jesse TI - Implications of vanishing Krein parameters on Delsarte designs, with applications in finite geometry JO - Algebraic Combinatorics PY - 2023 SP - 197 EP - 212 VL - 6 IS - 1 PB - The Combinatorics Consortium UR - http://geodesic.mathdoc.fr/articles/10.5802/alco.246/ DO - 10.5802/alco.246 LA - en ID - ALCO_2023__6_1_197_0 ER -
%0 Journal Article %A Bamberg, John %A Lansdown, Jesse %T Implications of vanishing Krein parameters on Delsarte designs, with applications in finite geometry %J Algebraic Combinatorics %D 2023 %P 197-212 %V 6 %N 1 %I The Combinatorics Consortium %U http://geodesic.mathdoc.fr/articles/10.5802/alco.246/ %R 10.5802/alco.246 %G en %F ALCO_2023__6_1_197_0
Bamberg, John; Lansdown, Jesse. Implications of vanishing Krein parameters on Delsarte designs, with applications in finite geometry. Algebraic Combinatorics, Tome 6 (2023) no. 1, pp. 197-212. doi: 10.5802/alco.246
Cité par Sources :