Implications of vanishing Krein parameters on Delsarte designs, with applications in finite geometry
Algebraic Combinatorics, Tome 6 (2023) no. 1, pp. 197-212

Voir la notice de l'article provenant de la source Numdam

In this paper we show that if θ is a T-design of an association scheme (Ω,), and the Krein parameters q i,j h vanish for some hT and all i,jT (i,j,h0), then θ consists of precisely half of the vertices of (Ω,) or it is a T -design, where |T |>|T|. We then apply this result to various problems in finite geometry. In particular, we show for the first time that nontrivial m-ovoids of generalised octagons of order (s,s 2 ) do not exist. We give short proofs of similar results for (i) partial geometries with certain order conditions; (ii) thick generalised quadrangles of order (s,s 2 ); (iii) the dual polar spaces DQ(2d,q), DW(2d-1,q) and DH(2d-1,q 2 ), for d3; (iv) the Penttila–Williford scheme. In the process of (iv), we also consider a natural generalisation of the Penttila–Williford scheme in Q - (2n-1,q), n3.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/alco.246
Classification : 05E30, 05B30, 05B25, 51E12, 51E05
Keywords: association schemes, Delsarte designs, Krein parameters, hemisystems, $m$-ovoids, generalised octagons, finite geometry

Bamberg, John 1 ; Lansdown, Jesse 1

1 Centre for the Mathematics of Symmetry and Computation Department of Mathematics and Statistics The University of Western Australia, W.A., Australia
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{ALCO_2023__6_1_197_0,
     author = {Bamberg, John and Lansdown, Jesse},
     title = {Implications of vanishing {Krein} parameters on {Delsarte} designs, with applications in finite geometry},
     journal = {Algebraic Combinatorics},
     pages = {197--212},
     publisher = {The Combinatorics Consortium},
     volume = {6},
     number = {1},
     year = {2023},
     doi = {10.5802/alco.246},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5802/alco.246/}
}
TY  - JOUR
AU  - Bamberg, John
AU  - Lansdown, Jesse
TI  - Implications of vanishing Krein parameters on Delsarte designs, with applications in finite geometry
JO  - Algebraic Combinatorics
PY  - 2023
SP  - 197
EP  - 212
VL  - 6
IS  - 1
PB  - The Combinatorics Consortium
UR  - http://geodesic.mathdoc.fr/articles/10.5802/alco.246/
DO  - 10.5802/alco.246
LA  - en
ID  - ALCO_2023__6_1_197_0
ER  - 
%0 Journal Article
%A Bamberg, John
%A Lansdown, Jesse
%T Implications of vanishing Krein parameters on Delsarte designs, with applications in finite geometry
%J Algebraic Combinatorics
%D 2023
%P 197-212
%V 6
%N 1
%I The Combinatorics Consortium
%U http://geodesic.mathdoc.fr/articles/10.5802/alco.246/
%R 10.5802/alco.246
%G en
%F ALCO_2023__6_1_197_0
Bamberg, John; Lansdown, Jesse. Implications of vanishing Krein parameters on Delsarte designs, with applications in finite geometry. Algebraic Combinatorics, Tome 6 (2023) no. 1, pp. 197-212. doi: 10.5802/alco.246

Cité par Sources :