On generalized Steinberg theory for type AIII
Algebraic Combinatorics, Tome 6 (2023) no. 1, pp. 165-195

Voir la notice de l'article provenant de la source Numdam

The multiple flag variety 𝔛=Gr( p+q ,r)×(Fl( p )×Fl( q )) can be considered as a double flag variety associated to the symmetric pair (G,K)=(GL p+q (), GL p ()×GL q ()) of type AIII. We consider the diagonal action of K on 𝔛. There is a finite number of orbits for this action, and our first result is a description of these orbits: parametrization (by a certain set of graphs), dimensions, closure relations and cover relations.

In [5], we defined two generalized Steinberg maps from the K-orbits of 𝔛 to the nilpotent K-orbits in 𝔨 and those in the Cartan complement of 𝔨, respectively. The main result in the present paper is a complete, explicit description of these two Steinberg maps by means of a combinatorial algorithm which extends the classical Robinson–Schensted correspondence.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/alco.245
Classification : 14M15, 17B08, 53C35, 05A15
Keywords: double flag variety, conormal bundle, exotic moment map, nilpotent orbits, partial permutations, Robinson–Schensted correspondence, Steinberg variety

Fresse, Lucas 1 ; Nishiyama, Kyo 2

1 Université de Lorraine CNRS Institut Élie Cartan de Lorraine UMR 7502 Vandoeuvre-lès-Nancy F-54506 France
2 Department of Mathematics Aoyama Gakuin University Fuchinobe 5-10-1 Chuo-ku Sagamihara 252-5258 Japan
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{ALCO_2023__6_1_165_0,
     author = {Fresse, Lucas and Nishiyama, Kyo},
     title = {On generalized {Steinberg} theory for type {AIII}},
     journal = {Algebraic Combinatorics},
     pages = {165--195},
     publisher = {The Combinatorics Consortium},
     volume = {6},
     number = {1},
     year = {2023},
     doi = {10.5802/alco.245},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5802/alco.245/}
}
TY  - JOUR
AU  - Fresse, Lucas
AU  - Nishiyama, Kyo
TI  - On generalized Steinberg theory for type AIII
JO  - Algebraic Combinatorics
PY  - 2023
SP  - 165
EP  - 195
VL  - 6
IS  - 1
PB  - The Combinatorics Consortium
UR  - http://geodesic.mathdoc.fr/articles/10.5802/alco.245/
DO  - 10.5802/alco.245
LA  - en
ID  - ALCO_2023__6_1_165_0
ER  - 
%0 Journal Article
%A Fresse, Lucas
%A Nishiyama, Kyo
%T On generalized Steinberg theory for type AIII
%J Algebraic Combinatorics
%D 2023
%P 165-195
%V 6
%N 1
%I The Combinatorics Consortium
%U http://geodesic.mathdoc.fr/articles/10.5802/alco.245/
%R 10.5802/alco.245
%G en
%F ALCO_2023__6_1_165_0
Fresse, Lucas; Nishiyama, Kyo. On generalized Steinberg theory for type AIII. Algebraic Combinatorics, Tome 6 (2023) no. 1, pp. 165-195. doi: 10.5802/alco.245

Cité par Sources :