Matroid relaxations and Kazhdan–Lusztig non-degeneracy
Algebraic Combinatorics, Tome 5 (2022) no. 4, pp. 745-769 Cet article a éte moissonné depuis la source Numdam

Voir la notice de l'article

In this paper we study the interplay between the operation of circuit-hyperplane relaxation and the Kazhdan–Lusztig theory of matroids. We obtain a family of polynomials, not depending on the matroids but only on their ranks, that relate the Kazhdan–Lusztig, the inverse Kazhdan–Lusztig and the Z-polynomial of each matroid with those of its relaxations. As an application of our main theorem, we prove that all matroids having a free basis are non-degenerate. Additionally, we obtain bounds and explicit formulas for all the coefficients of the Kazhdan–Lusztig, inverse Kazhdan–Lusztig and Z-polynomial of all sparse paving matroids.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/alco.244
Classification : 05B35, 05E10, 52B40, 11B83
Keywords: Kazhdan–Lusztig polynomials of matroids, Circuit-hyperplane relaxations, Geometric lattices, Real-rooted polynomials

Ferroni, Luis 1 ; Vecchi, Lorenzo 2

1 KTH Royal Institute of Technology Department of Mathematics Stockholm Sweden
2 Università di Bologna Dipartimento di Matematica Bologna Italy
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{ALCO_2022__5_4_745_0,
     author = {Ferroni, Luis and Vecchi, Lorenzo},
     title = {Matroid relaxations and {Kazhdan{\textendash}Lusztig} non-degeneracy},
     journal = {Algebraic Combinatorics},
     pages = {745--769},
     year = {2022},
     publisher = {The Combinatorics Consortium},
     volume = {5},
     number = {4},
     doi = {10.5802/alco.244},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5802/alco.244/}
}
TY  - JOUR
AU  - Ferroni, Luis
AU  - Vecchi, Lorenzo
TI  - Matroid relaxations and Kazhdan–Lusztig non-degeneracy
JO  - Algebraic Combinatorics
PY  - 2022
SP  - 745
EP  - 769
VL  - 5
IS  - 4
PB  - The Combinatorics Consortium
UR  - http://geodesic.mathdoc.fr/articles/10.5802/alco.244/
DO  - 10.5802/alco.244
LA  - en
ID  - ALCO_2022__5_4_745_0
ER  - 
%0 Journal Article
%A Ferroni, Luis
%A Vecchi, Lorenzo
%T Matroid relaxations and Kazhdan–Lusztig non-degeneracy
%J Algebraic Combinatorics
%D 2022
%P 745-769
%V 5
%N 4
%I The Combinatorics Consortium
%U http://geodesic.mathdoc.fr/articles/10.5802/alco.244/
%R 10.5802/alco.244
%G en
%F ALCO_2022__5_4_745_0
Ferroni, Luis; Vecchi, Lorenzo. Matroid relaxations and Kazhdan–Lusztig non-degeneracy. Algebraic Combinatorics, Tome 5 (2022) no. 4, pp. 745-769. doi: 10.5802/alco.244

Cité par Sources :