We study the representation theory of the uniform block permutation algebra in the context of the representation theory of factorizable inverse monoids. The uniform block permutation algebra is a subalgebra of the partition algebra and is also known as the party algebra. We compute its characters and provide a Frobenius characteristic map to symmetric functions. This reveals connections of the characters of the uniform block permutation algebra and plethysms of Schur functions.
Révisé le :
Accepté le :
Publié le :
Keywords: partition algebra, plethysm, representation theory of semigroups, symmetric functions
Orellana, Rosa 1 ; Saliola, Franco 2 ; Schilling, Anne 3 ; Zabrocki, Mike 4
CC-BY 4.0
@article{ALCO_2022__5_5_1165_0,
author = {Orellana, Rosa and Saliola, Franco and Schilling, Anne and Zabrocki, Mike},
title = {Plethysm and the algebra of uniform block permutations},
journal = {Algebraic Combinatorics},
pages = {1165--1203},
year = {2022},
publisher = {The Combinatorics Consortium},
volume = {5},
number = {5},
doi = {10.5802/alco.243},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5802/alco.243/}
}
TY - JOUR AU - Orellana, Rosa AU - Saliola, Franco AU - Schilling, Anne AU - Zabrocki, Mike TI - Plethysm and the algebra of uniform block permutations JO - Algebraic Combinatorics PY - 2022 SP - 1165 EP - 1203 VL - 5 IS - 5 PB - The Combinatorics Consortium UR - http://geodesic.mathdoc.fr/articles/10.5802/alco.243/ DO - 10.5802/alco.243 LA - en ID - ALCO_2022__5_5_1165_0 ER -
%0 Journal Article %A Orellana, Rosa %A Saliola, Franco %A Schilling, Anne %A Zabrocki, Mike %T Plethysm and the algebra of uniform block permutations %J Algebraic Combinatorics %D 2022 %P 1165-1203 %V 5 %N 5 %I The Combinatorics Consortium %U http://geodesic.mathdoc.fr/articles/10.5802/alco.243/ %R 10.5802/alco.243 %G en %F ALCO_2022__5_5_1165_0
Orellana, Rosa; Saliola, Franco; Schilling, Anne; Zabrocki, Mike. Plethysm and the algebra of uniform block permutations. Algebraic Combinatorics, Tome 5 (2022) no. 5, pp. 1165-1203. doi: 10.5802/alco.243
Cité par Sources :