Tableau models for semi-infinite Bruhat order and level-zero representations of quantum affine algebras
Algebraic Combinatorics, Tome 5 (2022) no. 5, pp. 1089-1164 Cet article a éte moissonné depuis la source Numdam

Voir la notice de l'article

We prove that semi-infinite Bruhat order on an affine Weyl group is completely determined from those on the quotients by affine Weyl subgroups associated with various maximal (standard) parabolic subgroups of finite type. Furthermore, for an affine Weyl group of classical type, we give a complete classification of all cover relations of semi-infinite Bruhat order (or equivalently, all edges of the quantum Bruhat graphs) on the quotients in terms of tableaux. Combining these we obtain a tableau criterion for semi-infinite Bruhat order on an affine Weyl group of classical type. As an application, we give new tableau models for the crystal bases of a level-zero fundamental representation and a level-zero extremal weight module over a quantum affine algebra of classical untwisted type, which we call quantum Kashiwara–Nakashima columns and semi-infinite Kashiwara–Nakashima tableaux. We give an explicit description of the crystal isomorphisms among three different realizations of the crystal basis of a level-zero fundamental representation by quantum Lakshmibai–Seshadri paths, quantum Kashiwara–Nakashima columns, and (ordinary) Kashiwara–Nakashima columns.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/alco.242
Classification : 17B37, 17B10, 05E10
Keywords: Affine Weyl group, quantum affine algebra, semi-infinite Bruhat order, quantum Bruhat graph, level-zero fundamental representation, level-zero extremal weight module

Ishii, Motohiro 1

1 Department of Mathematics Cooperative Faculty of Education Gunma University Maebashi Gunma 371-8510 Japan
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{ALCO_2022__5_5_1089_0,
     author = {Ishii, Motohiro},
     title = {Tableau models for semi-infinite {Bruhat} order and level-zero representations of quantum affine algebras},
     journal = {Algebraic Combinatorics},
     pages = {1089--1164},
     year = {2022},
     publisher = {The Combinatorics Consortium},
     volume = {5},
     number = {5},
     doi = {10.5802/alco.242},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5802/alco.242/}
}
TY  - JOUR
AU  - Ishii, Motohiro
TI  - Tableau models for semi-infinite Bruhat order and level-zero representations of quantum affine algebras
JO  - Algebraic Combinatorics
PY  - 2022
SP  - 1089
EP  - 1164
VL  - 5
IS  - 5
PB  - The Combinatorics Consortium
UR  - http://geodesic.mathdoc.fr/articles/10.5802/alco.242/
DO  - 10.5802/alco.242
LA  - en
ID  - ALCO_2022__5_5_1089_0
ER  - 
%0 Journal Article
%A Ishii, Motohiro
%T Tableau models for semi-infinite Bruhat order and level-zero representations of quantum affine algebras
%J Algebraic Combinatorics
%D 2022
%P 1089-1164
%V 5
%N 5
%I The Combinatorics Consortium
%U http://geodesic.mathdoc.fr/articles/10.5802/alco.242/
%R 10.5802/alco.242
%G en
%F ALCO_2022__5_5_1089_0
Ishii, Motohiro. Tableau models for semi-infinite Bruhat order and level-zero representations of quantum affine algebras. Algebraic Combinatorics, Tome 5 (2022) no. 5, pp. 1089-1164. doi: 10.5802/alco.242

Cité par Sources :