Automorphism groups of Steiner triple systems
Algebraic Combinatorics, Tome 5 (2022) no. 4, pp. 593-608
Cet article a éte moissonné depuis la source Numdam
If is a finite group then there is an integer such that for and or (mod 6), there is a Steiner triple system on points for which If is a Steiner triple system then there is an integer such that for and or mod there is a Steiner triple system on points having as an -invariant subsystem such that and induces on .
Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI :
10.5802/alco.240
Révisé le :
Accepté le :
Publié le :
Classification :
05B07, 05B25, 51E10
Keywords: Steiner triple system, Automorphism group
Keywords: Steiner triple system, Automorphism group
Affiliations des auteurs :
Doyen, Jean 1 ; Kantor, William M. 2
Licence :
CC-BY 4.0
CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{ALCO_2022__5_4_593_0,
author = {Doyen, Jean and Kantor, William M.},
title = {Automorphism groups of {Steiner} triple systems},
journal = {Algebraic Combinatorics},
pages = {593--608},
year = {2022},
publisher = {The Combinatorics Consortium},
volume = {5},
number = {4},
doi = {10.5802/alco.240},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5802/alco.240/}
}
TY - JOUR AU - Doyen, Jean AU - Kantor, William M. TI - Automorphism groups of Steiner triple systems JO - Algebraic Combinatorics PY - 2022 SP - 593 EP - 608 VL - 5 IS - 4 PB - The Combinatorics Consortium UR - http://geodesic.mathdoc.fr/articles/10.5802/alco.240/ DO - 10.5802/alco.240 LA - en ID - ALCO_2022__5_4_593_0 ER -
Doyen, Jean; Kantor, William M. Automorphism groups of Steiner triple systems. Algebraic Combinatorics, Tome 5 (2022) no. 4, pp. 593-608. doi: 10.5802/alco.240
Cité par Sources :