Voir la notice de l'article provenant de la source Numdam
We study exactly solvable lattice models associated to canonical Grothendieck polynomials and their duals. We derive inversion relations and Cauchy identities.
Gunna, Ajeeth 1 ; Zinn-Justin, Paul 1
@article{ALCO_2023__6_1_109_0, author = {Gunna, Ajeeth and Zinn-Justin, Paul}, title = {Vertex models for {Canonical} {Grothendieck} polynomials and their duals}, journal = {Algebraic Combinatorics}, pages = {109--163}, publisher = {The Combinatorics Consortium}, volume = {6}, number = {1}, year = {2023}, doi = {10.5802/alco.235}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.5802/alco.235/} }
TY - JOUR AU - Gunna, Ajeeth AU - Zinn-Justin, Paul TI - Vertex models for Canonical Grothendieck polynomials and their duals JO - Algebraic Combinatorics PY - 2023 SP - 109 EP - 163 VL - 6 IS - 1 PB - The Combinatorics Consortium UR - http://geodesic.mathdoc.fr/articles/10.5802/alco.235/ DO - 10.5802/alco.235 LA - en ID - ALCO_2023__6_1_109_0 ER -
%0 Journal Article %A Gunna, Ajeeth %A Zinn-Justin, Paul %T Vertex models for Canonical Grothendieck polynomials and their duals %J Algebraic Combinatorics %D 2023 %P 109-163 %V 6 %N 1 %I The Combinatorics Consortium %U http://geodesic.mathdoc.fr/articles/10.5802/alco.235/ %R 10.5802/alco.235 %G en %F ALCO_2023__6_1_109_0
Gunna, Ajeeth; Zinn-Justin, Paul. Vertex models for Canonical Grothendieck polynomials and their duals. Algebraic Combinatorics, Tome 6 (2023) no. 1, pp. 109-163. doi: 10.5802/alco.235
Cité par Sources :