Let and be edge ideals in a polynomial ring with . In this paper, we obtain a general upper and lower bound for the Castelnuovo–Mumford regularity of in terms of certain invariants associated with and . Using these results, we explicitly compute the regularity of for several classes of edge ideals. In particular, we compute the regularity of when has a linear resolution. Finally, we compute the precise expression for the regularity of , , where are edge ideals, and is the edge ideal of a complete graph.
Révisé le :
Accepté le :
Publié le :
Keywords: Castelnuovo–Mumford regularity, product of edge ideals, linear resolution
Banerjee, Arindam 1 ; Das, Priya 2 ; Selvaraja, S 3
CC-BY 4.0
@article{ALCO_2022__5_5_1015_0,
author = {Banerjee, Arindam and Das, Priya and Selvaraja, S},
title = {Bounds for the regularity of product of edge ideals},
journal = {Algebraic Combinatorics},
pages = {1015--1032},
year = {2022},
publisher = {The Combinatorics Consortium},
volume = {5},
number = {5},
doi = {10.5802/alco.234},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5802/alco.234/}
}
TY - JOUR AU - Banerjee, Arindam AU - Das, Priya AU - Selvaraja, S TI - Bounds for the regularity of product of edge ideals JO - Algebraic Combinatorics PY - 2022 SP - 1015 EP - 1032 VL - 5 IS - 5 PB - The Combinatorics Consortium UR - http://geodesic.mathdoc.fr/articles/10.5802/alco.234/ DO - 10.5802/alco.234 LA - en ID - ALCO_2022__5_5_1015_0 ER -
%0 Journal Article %A Banerjee, Arindam %A Das, Priya %A Selvaraja, S %T Bounds for the regularity of product of edge ideals %J Algebraic Combinatorics %D 2022 %P 1015-1032 %V 5 %N 5 %I The Combinatorics Consortium %U http://geodesic.mathdoc.fr/articles/10.5802/alco.234/ %R 10.5802/alco.234 %G en %F ALCO_2022__5_5_1015_0
Banerjee, Arindam; Das, Priya; Selvaraja, S. Bounds for the regularity of product of edge ideals. Algebraic Combinatorics, Tome 5 (2022) no. 5, pp. 1015-1032. doi: 10.5802/alco.234
Cité par Sources :